Skip to main content

Advertisement

Log in

Copper sulfide nanoneedles on CNT backbone composite electrodes for high-performance supercapacitors and Li-S batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hierarchical-structured copper sulfide nanoneedles were grown on multi-walled carbon nanotube backbone (denoted as CuS@CNT) as electrodes for supercapacitors via a facile template-based hydrothermal conversion approach and further by simply impregnating sulfur into CuS@CNT (S@CuS@CNT) as electrodes for Li-S batteries. The electrochemical measurements showed that the resultant CuS@CNT composite electrodes deliver outstanding electrochemical performance with a specific capacitance up to 566.4 F g−1 and cyclic stability of 94.5 % of its initial capacitance after 5000 cycles at a current density of 1 A g−1. A synergistic effect arising from the unique hierarchical structure was responsible for the electrode performance, including a large surface area of 49.3 m2 g−1 and active CuS ultrafine nanoneedles firmly bonded to the highly conductive carbon nanotube (CNT) backbone. When used as an electrode material for Li-S batteries, the S@CuS@CNT (S content 59 wt%) exhibited satisfying electrochemical performance. The S@CuS@CNT electrode showed that coulombic efficiency was close to 100 % and capacity maintained more than 500 mA h g−1 with progressive cycling up to more than 100 cycles even at a high current density. This strategy of stabilizing S with a small amount of copper sulfide nanoneedles can be a very promising method to prepare free-standing cathode material for high-performance Li-S batteries. The fabrication strategy presented here is low cost, facile, and scalable, which can be considered as a promising material for large-scale energy storage device. In particular, the use of CNT as backbone for the growth of active materials presents many potential merits owing to its lightweight, biodegradable, and stretchable characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang YM, Chen JH, Cao JY, Zhou Y, Ouyang JH, Jia DH (2014) J Power Sources 271:269–277

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Luo YS, Luo JS, Jiang J, Zhou WW, Yang HP, Qi XY, Zhang H, Fan HJ, Yu DYW, Li CM, Yu T (2012) Energy Environ Sci 5:6559–6566

    Article  CAS  Google Scholar 

  4. Cheng JB, Yan HL, Lu Y, Qiu KW, Hou XY, Xu JY, Han L, Liu XM, Kim JK, Luo YS (2015) J Mater Chem A 3:9769–9776

    Article  CAS  Google Scholar 

  5. Qiu KW, Lu Y, Zhang DY, Cheng JB, Yan HL, Xu JY, Liu XM, Kim JK, Luo YS (2015) Nano Energy 11:687–696

    Article  CAS  Google Scholar 

  6. Wang Y, Foo CY, Hoo TK, Ng M, Lin J (2010) Chem Eur J 16:3598–3603

    Article  CAS  Google Scholar 

  7. Fan LZ, Hu YS, Maier J, Adelhelm P, Smarsly B, Antoniett M (2007) Adv Funct Mater 17:3083–3087

    Article  CAS  Google Scholar 

  8. Wang HL, Gao QM, Jiang L (2011) Small 7:2454–2459

    CAS  Google Scholar 

  9. Song JX, Xu T, Gordin ML, Zhu PY, Lv DP, Jiang YB, Chen YS, Duan YH, Wang DH (2014) Adv Funct Mater 24:1243–1250

    Article  CAS  Google Scholar 

  10. Yang Y, Zheng GY, Cui Y (2013) Energy Environ Sci 6:1552–1558

    Article  CAS  Google Scholar 

  11. He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar LF (2013) ACS Nano 7:10920–10930

    Article  CAS  Google Scholar 

  12. Zheng GY, Zhang QF, Cha JJ, Yang Y, Li YW, Seh ZW, Cui Y (2013) Nano Lett 13:1265–1270

    Article  CAS  Google Scholar 

  13. Wang L, Wang D, Zhang FX, Jin J (2013) Nano Lett 13:4206–4211

    Article  CAS  Google Scholar 

  14. Yang Y, Ya XY, Sen X, Jing S, Yu GG, Li JW (2013) Electrochim Acta 91:58–61

    Article  Google Scholar 

  15. Su YS, Manthiram A (2012) Nat Commun 3:1166

    Article  Google Scholar 

  16. He M, Yuan LX, Huang YH (2013) RSC Adv 3:3374–3383

    Article  CAS  Google Scholar 

  17. Zheng LX, Zhan ZY, Liu C, Sun GZ (2011) Phys Chem Chem Phys 13:20471–20475

    Article  Google Scholar 

  18. Zheng LX, O’Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC, Peterson DE, Huang SM, Liu J, Zhu YT (2004) Nat Mater 3:673–676

    Article  CAS  Google Scholar 

  19. Wei Y, Weng D, Yang YC, Zhang XB, Jiang KL, Liu L, Fan SS (2006) Appl Phys Lett 89:063101

    Article  Google Scholar 

  20. Baughman RH, Zakhidov AA, Wade H (2002) Science 297:787–792

    Article  CAS  Google Scholar 

  21. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Science 287:622–625

  22. Wang XW, Li MX, Chang Z, Yang YQ, Wu YP, Liu X (2015) ACS Appl Mater Interfaces 7:2280–2285

    Article  CAS  Google Scholar 

  23. Cheng JL, Wang B, Park CM, Wu YP, Huang H, Nie F (2013) Chem Eur J 19:9866–9874

    Article  CAS  Google Scholar 

  24. Tang W, Gao XW, Zhu YS, Yue YB, Shi Y, Wu YP, Zhu K (2012) J Mater Chem 22:20143–20145

    Article  CAS  Google Scholar 

  25. Lee H, Yoon SW, Kim EJ, Park J (2007) Nano Lett 7:778–784

    Article  CAS  Google Scholar 

  26. Zhou M, Zhang R, Huang MA, Lu W, Song SL, Melancon MP, Tian M, Liang D, Li C (2010) J Am Chem Soc 132:15351–15358

    Article  CAS  Google Scholar 

  27. Zhang XJ, Wang GF, Gu AX, Wei Y, Fang B (2008) Chem Commun:5945–5947

  28. Lai CH, Huang KW, Cheng JH, Lee CY, Hwang BJ, Chen LJ (2010) J Mater Chem 20:6638–6645

    Article  CAS  Google Scholar 

  29. Qian XF, Lv YY, Li W, Xia YY, Zhao DY (2011) J Mater Chem 21:13025–13031

    Article  CAS  Google Scholar 

  30. Wu H, Wang XY, Jiang LL, Wu C, Zhao QL, Liu X, Hu BA, Yi LH (2013) J Power Sources 226:202–209

    Article  CAS  Google Scholar 

  31. Wang S, Ning J, Zhao L, Liu B, Zou B (2010) J Cryst Growth 312:2060–2064

    Article  CAS  Google Scholar 

  32. Wang YQ, Wang GZ, Wang HQ, Cai WP, Zhang LD (2008) Chem Commun:6555–6557

  33. Thongtem T, Phuruangrat A, Thongtem S (2010) Mater Lett 64:136–139

    Article  CAS  Google Scholar 

  34. Ishii M, Shibata K, Nozaki H (1993) J Solid State Chem 105:504–511

    Article  CAS  Google Scholar 

  35. Zhang Y, Xu MW, Wang F, Song XP, Yang S (2013) J Phys Chem C 117:12346–12351

    Article  CAS  Google Scholar 

  36. Huang KJ, Zhang JZ, Xing K (2014) Electrochim Acta 149:28–33

    Article  CAS  Google Scholar 

  37. Giambastiani G, Cicchi S, Giannasi A, Luconi L, Rossin A, Mercuri F, Bianchini C, Brandi A, Melucci M, Ghini G, Stagnaro P, Conzatti L, Passaglia E, Zoppi M, Montini T, Fornasiero P (2011) Chem Mater 23:1923–1938

    Article  CAS  Google Scholar 

  38. Liu B, Zeng HC (2008) Chem Mater 20:2711–2718

    Article  CAS  Google Scholar 

  39. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem 47:2930–2946

    Article  CAS  Google Scholar 

  40. Xia XH, Zhu CR, Luo JS, Zeng ZY, Guan C, Ng CF, Zhang H, Fan HJ (2014) Small 10:766–773

    Article  CAS  Google Scholar 

  41. Zhang B, Liu Y, Huang ZD, Oh SW, Yu Y, Mai YW, Kim JK (2012) J Mater Chem 22:12133–12140

    Article  CAS  Google Scholar 

  42. Lu Y, Liu XM, Qiu KW, Cheng JB, Wang WX, Yan HL, Tang CC, Kim JK, Luo YS (2015) ACS Appl Mater Interfaces 7:9682–9690

    Article  CAS  Google Scholar 

  43. Krylova V, Andrulevicius M (2009) Int J Photoenergy 2009:53–58

    Article  Google Scholar 

  44. Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF (2012) Angew Chem Int Ed 51:3591–3595

    Article  CAS  Google Scholar 

  45. Guo JC, Liu Q, Wang CS, Zachariah MR (2012) Adv Funct Mater 22:803–811

    Article  CAS  Google Scholar 

  46. Luo C, Zhu YJ, Wen Y, Wang JJ, Wang CS (2014) Adv Funct Mater 24:4082–4089

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Nos. 51502257, 61574122, 21373107, and U1304108), the Innovative Research Team (in Science and Technology) in Universities in Henan Province (No. 13IRTSTHN018), and the program for Science and Technology Innovation Talents in Universities of Henan Province (No. 15HASTIT018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianming Liu, Xiaoxu Ji or Yongsong Luo.

Electronic supplementary material

ESM 1

(DOC 2176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Liu, X., Lu, Y. et al. Copper sulfide nanoneedles on CNT backbone composite electrodes for high-performance supercapacitors and Li-S batteries. J Solid State Electrochem 21, 349–359 (2017). https://doi.org/10.1007/s10008-016-3322-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3322-4

Keywords

Navigation