Skip to main content
Log in

The influence of DMSO on the formation and photoelectrochemical properties of CdS thin films by electrodeposition method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The homodispersed CdS nanoparticles were prepared on Sn-doped indium oxide substrates (ITO) to form smooth and uniform CdS thin films by electrodeposition method from a dimethyl sulfoxide (DMSO) solution containing cadmium chloride and sulfur. The structure and morphologies of samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The results indicate that DMSO played an important role in formation of CdS nanofilms by affecting the nucleation and growth of the CdS nanoparticles. So, a DMSO-assisted growth process was proposed as a plausible mechanism for the formation of smooth and uniform CdS nanofilms. According to the photoelectrochemical test, the CdS thin film prepared in 30 % DMSO + 70 % H2O system exhibited maximum photocurrent and open circuit potentials. This is because the deposited CdS nanoparticles had better dispersity on ITO, which facilitated the propagation and kinetic separation of photogenerated charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen CC, Herhold AB, Johnson CS, Alivisatos AP (1997) Size dependence of structural metastability in semiconductor nanocrystals. Science 276:398–401

    Article  CAS  Google Scholar 

  2. WW Y, Peng XG (2002) Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed 41:2368–2371

    Article  Google Scholar 

  3. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties on nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  4. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59–61

    Article  CAS  Google Scholar 

  5. JT H, Odom TW, Lieber CM (1999) Clm formation by the method chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445

    Article  Google Scholar 

  6. Lee S, Lee ES, Kim TY, Cho JS, Eo YJ, Jae H, Cho A (2015) Effect of annealing treatment on CdS/CIGS thin film solar cells depending on different CdS deposition temperatures. Sol Energy Mater Sol Cells 141:299–308

    Article  CAS  Google Scholar 

  7. Mohamed HA (2015) Optimized conditions for the improvement of thin film CdS/CdTe solar cells. Thin Solid Films 589:72–78

    Article  CAS  Google Scholar 

  8. Kim D, Park Y, Kim M, Choi Y, Park YS, Lee J (2015) Optical and structural properties of sputtered CdS films for thin film solar cell applications. Mater Res Bull 69:78–83

    Article  CAS  Google Scholar 

  9. Liao YL, Zhang J, Liu WG, Que WX, Yin XT, Zhang DN, Tang LH, He WD, Zhong ZY, Zhang HW (2015) Enhancing the efficiency of CdS quantum dot-sensitized solar cells via electrolyte engineering. Nano Energy 11:88–95

    Article  CAS  Google Scholar 

  10. Jovanovski V, Gonzalez-Pedro V, Gimenez S, Azaceta E, Cabanero G, Grande H, Tena-Zaera R, Mora-Sero I, Bisquert J (2011) A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells. J Am Chem Soc 133:20156–20159

    Article  CAS  Google Scholar 

  11. Agarwal R, Barrelet C, Lieber CM (2005) Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett 5:917–920

    Article  CAS  Google Scholar 

  12. Jie JS, Zhang WJ, Jiang Y, Merag XM, Li YQ, Lee ST (2006) Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett 6:1887–1892

    Article  CAS  Google Scholar 

  13. Singh RS, Rangari VK, Sanagapalli S, Jayaraman V, Mahendra S, Singh VP (2004) Nano-structured CdTe, CdS and TiO2 for thin film solar cell applications. Sol Energy Mater Sol Cells 82:315–330

    Article  CAS  Google Scholar 

  14. Jia H, Hu Y, Tang Y, Zhang YL (2006) Synthesis and photoelectrochemical behavior of nanocrystalline CdS film electrodes. Electrochem Commun 89:1381–1385

    Article  Google Scholar 

  15. Soundeswaran S, Senthil Kumar O, Dhanasekaran R (2004) Effect of ammonium sulphate on chemical bath deposition of CdS thin films. Mater Lett 58:2381–2385

    Article  CAS  Google Scholar 

  16. Ing YC, Zainal Z, Kassim A, Yunus WMM (2011) Electrochemical preparation of bilayer p-n junction of n-CdS/p-P3HT. Int J Electrochem Sci 6:2898–2904

    CAS  Google Scholar 

  17. Ge JP, Lee YD (2004) Selective atmospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs. Adv Funct Mater 14:157–162

    Article  CAS  Google Scholar 

  18. PC W, Ye Y, Liu C, Ma RM, Sun T, Dai L (2009) Logic gates constructed on CdS nanobelt field-effect transistors with high-κ HfO2 top-gate dielectrics. J Mater Chem 19:7296–7300

    Article  Google Scholar 

  19. Dong LF, Jiao J, Coulter M, Love L (2003) Catalytic growth of CdS nanobelts and nanowires on tungsten substrates. Chem Phys Lett 376:653–658

    Article  CAS  Google Scholar 

  20. Lee KY, Lim JR, Rho H, Choi YJ, Choi KJ, Park JG (2007) Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets. Appl Phys Lett 91:201901/1–201901/3

    CAS  Google Scholar 

  21. Gao T, Wang TH (2004) Catalyst-assisted vapor-liquid-solid growth of single-crystal CdS nanobelts and their luminescence properties. J Phys Chem B 108:20045–20049

    Article  CAS  Google Scholar 

  22. Zhu G, Lv T, Pan L, Sun Z, Sun C (2011) A giant polarization value in bismuth ferrite thin films. J Alloys Compd 509:362–365

    Article  CAS  Google Scholar 

  23. Sahay PP, Nath RK, Tewari S (2007) Optical properties of thermally evaporated CdS thin films. Cryst Res Technol 42:275–280

    Article  CAS  Google Scholar 

  24. Thambidur M, Murugan N, Muthukumarasamy N, Vasantha S, Balasundaraprabhu R, Agilan S (2009) Preparation and characterization of nanocrystalline CdS thin films. Chalcogenide Lett 6:171–179

    Google Scholar 

  25. Orlianges JC, Champeaux C, Dutheil P, Catherinot A, Merle Mejean T (2011) Structural, electrical and optical properties of carbon-doped CdS thin films prepared by pulsed-laser deposition. Thin Solid Films 519:7611–7614

    Article  CAS  Google Scholar 

  26. FA P (2009) CdS thin-film formation by the method of co-evaporation. J Appl Phys 35:2730–2732

    Google Scholar 

  27. Isaiah O, Chow OL (2005) Synthesis and processing of CdS/ZnS multilayer films for solar cell application. Thin Solid Films 474:77–83

    Article  Google Scholar 

  28. Pathan HM, Lokhande CD (2004) Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull Mater Sci 27:85–111

    Article  CAS  Google Scholar 

  29. Chesman ASR, Duffy NW, Martucci A, Tozi LDO, Singh TB, Jasieniak JJ (2014) Solution-processed CdS thin films from a single-source precursor. J Mater Chem 2:3247–3253

    CAS  Google Scholar 

  30. Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125

    Article  CAS  Google Scholar 

  31. Miller B, Heller A (1976) Semiconductor liquid junction solar-cells based on anodic sulfide films. Nature 262:680–681

    Article  CAS  Google Scholar 

  32. McCann JF, Skyllas Kazacos M (1981) The electrochemical deposition and formation of cadmium sulphide thin film electrodes in aqueous electrolytes. J Electroanal Chem 119:409–412

    Article  CAS  Google Scholar 

  33. Hodes G, Manassen J, Neagu S (1982) Electroplated cadmium chalcogenide layer—characterization and use in photoelectrochemical solar-cells. Thin Solid Films 90:433–438

    Article  CAS  Google Scholar 

  34. Baranski AS, Fawcett WR, McDonald AC (1984) The mechanism of electrodeposition of cadmium sulphide on inert metals from dimethylsulphoxide solution. J Electroanal Chem 160:271–287

    Article  CAS  Google Scholar 

  35. Lade SJ, Lokhande CD (1997) Electrodeposition of CdS from non-aqueous bath. Mater Chem Phys 49:160–163

    Article  CAS  Google Scholar 

  36. Lade SJ, Uplane MD, Lokhande CD (2001) Photoelectrochemical properties of CdX (X=S, Se, Te) films electrodeposited from aqueous and non-aqueous baths. Mater Chem Phys 68:36–41

    Article  CAS  Google Scholar 

  37. Izgorodin A, Winther-Jensen O, Winther-Jensen B, MacFarlane DR (2009) CdS thin-film electrodeposition from a phosphonium ionic liquid. Phys Chem Chem Phys 11:8532–8537

    Article  CAS  Google Scholar 

  38. Baranski AS, Fawcett WR, McDonald AC, de Nobriga RM (1981) The structural characterization of cadmium sulfide films grown by cathodic electrodeposition. J Electrochem Soc 128:963–968

    Article  CAS  Google Scholar 

  39. Takahashi M, Hasegawa S, Watanabe M, Miyuki T, Ikeda S, Iida K (2002) Preparation of CdS thin films by electrodeposition: effect of colloidal sulfur particle stability on film composition. J Appl Electrochem 32:359–367

    Article  CAS  Google Scholar 

  40. Zarebska K, Skompska M (2011) Electrodeposition of CdS from acidic aqueous thiosulfate solution—investigation of the mechanism by electrochemical quartz microbalance technique. Electrochim Acta 56:5731–5739

    Article  CAS  Google Scholar 

  41. Power GP, Peggs DR, Parker AJ (1981) The cathodic formation of photoactive cadmium 0 sulfide films from thiosulfate solutions. Electrochim Acta 26:681–682

    Article  CAS  Google Scholar 

  42. Nishino J, Chatani S, Uotani Y, Nosaka Y (1999) Electrodeposition method for controlled formation of CdS films from aqueous solutions. J Electroanal Chem 473:217–222

    Article  CAS  Google Scholar 

  43. Lade SJ, Uplane MD, Lokhande CD (1998) Studies on the electrodeposition of CdS films. Mater Chem Phys 53:239–242

    Article  CAS  Google Scholar 

  44. Sasikala G, Dhanasekaran R, Subramanian C (1997) Electrodeposition and optical characterisation of CdS thin films on ITO-coated glass. Thin Solid Films 302:71–76

    Article  CAS  Google Scholar 

  45. Wang CL, Sun L, Xie KP, Lin CJ (2009) Controllable incorporation of CdS nanoparticles into TiO2 nanotubes for highly enhancing the photocatalytic response to visible light. Sci China Ser B 52:2148–2155

    Article  CAS  Google Scholar 

  46. Chen SG, Paulose M, Ruan C, Mor GK, Varghese OK, Kouzoudis D, Grimes CA (2006) Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells. J Photochem Photobiol A 177:177–184

    Article  CAS  Google Scholar 

  47. Xie KP, Wu Z, Wang MY, JD Y, Gong C, Sun L, Lin CJ (2016) Room temperature synthesis of CdS nanoparticle-decorated TiO2 nanotube arrays by electrodeposition with improved visible-light photoelectrochemical properties. Electrochem Commun 63:56–59

    Article  CAS  Google Scholar 

  48. Pandey RK, Sahu SN, Chandra S (1996) Handbook of semiconductor electrodeposition. Marcel Dekker, New York, p. 8

    Google Scholar 

  49. Sahari A, Azizi A, Schmerber G, Dinia A (2008) Nucleation, growth, and morphological properties of electrodeposition nikel films from different baths. Surf Rev Lett 15:717–725

    Article  CAS  Google Scholar 

  50. Tantavichet N, Pritzker MD (2005) Effect of plating mode, thiourea and chloride on the morphology of copper deposits produced in acidic sulphate solutions. Electrochim Acta 50:1849–1861

    Article  CAS  Google Scholar 

  51. Tantavichet N, Damronglerd S, Chailapakul O (2009) Influence of the interaction between chloride and thiourea on copper electrodeposition. Electrochim Acta 55:240–249

    Article  CAS  Google Scholar 

  52. Xue JB, Shen QQ, Liang W, Liu XG, Bian LP, Xu BS (2013) Preparation and formation mechanism of smooth and uniform Cu2O thin films by electrodeposition method. Surf Coat Technol 216:166–171

    Article  CAS  Google Scholar 

  53. Wankhede ME, Haram SK (2003) Synthesis and characterization of Cd-DMSO complex capped CdS nanoparticles. Chem Mater 15:1296–1301

    Article  CAS  Google Scholar 

  54. El-Korashy A, Abu El-Fadl A (1999) Temperature dependence of the optical band gap of nearly perfect K2ZnCl4 single crystals in the ferroelectric phase. Physica B 271:205–211

    Article  CAS  Google Scholar 

  55. Balamurugan B, Aruna I, Metha BR, Shivaprasad SM (2004) Size-dependent conductivity-type inversion in Cu2O nanoparticles. Phys Rev B 69:165419/1–165419/5

    Article  CAS  Google Scholar 

  56. Balamurugan B, Metha BR (2001) Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films 396:90–96

    Article  CAS  Google Scholar 

  57. Suzuki K, Tanaka N, Ando A, Takagi H (2011) Optical properties and fabrication of cuprous oxide nanoparticles by microemulsion method. J Am Ceram Soc 94:2379–2385

    Article  CAS  Google Scholar 

  58. Zhang H, Quan X, Chen S, Yu HT, Ma N (2009) “Mulberry-like” CdSe nanoclusters anchored on TiO2 nanotube arrays: a novel architecture for remarkable photo-energy conversion efficiency, Chem Mater 21:3090–3095.

Download references

Acknowledgments

This project was supported by Shanxi Provincial Key Innovative Research Team in Science and Technology (201513002-10), National Natural Science Foundation of China (51402209, 21176169), Youth Science and Technology Research Fund of Shanxi province(2015021075), Youth Development Fund of Taiyuan University of Technology (2013Z033) and Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and Key Laboratory No. 2013E10022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinbo Xue or Husheng Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Q., Xue, J., Liu, X. et al. The influence of DMSO on the formation and photoelectrochemical properties of CdS thin films by electrodeposition method. J Solid State Electrochem 21, 19–26 (2017). https://doi.org/10.1007/s10008-016-3314-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3314-4

Keywords

Navigation