Skip to main content
Log in

Emulsion polymerization method for polyaniline-multiwalled carbon nanotube nanocomposites as supercapacitor materials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocomposites consisting of the conducting polymer, polyaniline (PANI), and multiwalled carbon nanotubes (MWNT) were prepared by in situ emulsion polymerization of aniline monomer on the surface of MWNT, using sodium dodecyl sulfate as an emulsifier and by varying the wt% of the MWNT. The morphology, composition, and thermal stability of the PANI-MWNT nanocomposites and pure PANI were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission electron microscopy (FE-SEM). The PANI-MWNT nanocomposites were found to be crystalline in nature, with the PANI corals grown uniformly on the MWNT. Symmetric supercapacitors were constructed using the PANI-MWNT nanocomposites and pure PANI. Electrochemical analysis of the nanocomposites was performed using cyclic voltammetry and the galvanostatic charge-discharge method. The cyclic voltammetry analysis showed a synergistic increase in the specific capacitance of the PANI-MWNT nanocomposites. The unique structure of the PANI-MWNT nanocomposites led to a high specific capacitance of 240 F g−1 at a current density of 4.0 A g−1, with good rate performance, and 93 % retention of specific capacitance after 5000 CD cycles, indicating their potential as an electrode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Ferreira HL, Garde R, Fulli G, et al. (2013) Characterisation of electrical energy storage technologies. Energy 53:288–298

    Article  Google Scholar 

  3. Lee SY, JIL K, SJ P (2014) Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes. Energy 78:298–303

    Article  CAS  Google Scholar 

  4. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  5. Yang Y, Hao Y, Yuan J, et al. (2014) In situ preparation of caterpillar-like polyaniline/carbon nanotube hybrids with core shell structure for high performance supercapacitors. Carbon N Y 78:279–287

    Article  CAS  Google Scholar 

  6. Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668

    Article  CAS  Google Scholar 

  7. Potphode DD, Sivaraman P, Mishra SP, Patri M (2015) Polyaniline/partially exfoliated multi-walled carbon nanotubes based nanocomposites for supercapacitors. Electrochim Acta 155:402–410

    Article  CAS  Google Scholar 

  8. Khomenko V, Frackowiak E, Béguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50:2499–2506

    Article  CAS  Google Scholar 

  9. Mittal G, Dhand V, Rhee KY, et al. (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    Article  CAS  Google Scholar 

  10. Guo F, Mi H, Zhou J, et al. (2015) Hybrid pseudocapacitor materials from polyaniline@multi-walled carbon nanotube with ultrafine nanofiber-assembled network shell. Carbon 95:323–329

    Article  CAS  Google Scholar 

  11. Otrokhov G, Pankratov D, Shumakovich G, et al. (2014) Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application. Electrochim Acta 123:151–157

    Article  CAS  Google Scholar 

  12. Bhandari S, Khastgir D (2015) Synergistic effect of simultaneous dual doping in solvent-free mechanochemical synthesis of polyaniline supercapacitor comparable to the composites with multiwalled carbon nanotube. Polym (United Kingdom) 81:62–69

    CAS  Google Scholar 

  13. Wu W, Li Y, Yang L, et al. (2014) Preparation and characterization of coaxial multiwalled carbon nanotubes/polyaniline tubular nanocomposites for electrochemical energy storage in the presence of sodium alginate. Synth Met 193:48–57

    Article  CAS  Google Scholar 

  14. Wu M, Snook GA, Gupta V, et al. (2005) Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J Mater Chem 15:2297–2303

    Article  CAS  Google Scholar 

  15. Mi H, Zhang X, An S, et al. (2007) Microwave-assisted synthesis and electrochemical capacitance of polyaniline/multi-wall carbon nanotubes composite. Electrochem Commun 9:2859–2862

    Article  CAS  Google Scholar 

  16. Sivakkumar SR, Kim WJ, Choi JA, et al. (2007) Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources 171:1062–1068

    Article  CAS  Google Scholar 

  17. Zhang J, Kong L-B, Wang B, et al. (2009) In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth Met 159:260–266

    Article  CAS  Google Scholar 

  18. Zhu ZZ, Wang GC, Sun MQ, et al. (2011) Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochim Acta 56:1366–1372

    Article  CAS  Google Scholar 

  19. Zhou Y, Qin ZY, Li L, et al. (2010) Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials. Electrochim Acta 55:3904–3908

    Article  CAS  Google Scholar 

  20. Bavio MA, Acosta GG, Kessler T (2014) Synthesis and characterization of polyaniline and polyaniline—carbon nanotubes nanostructures for electrochemical supercapacitors. J Power Sources 245:475–481

    Article  CAS  Google Scholar 

  21. Fathi M, Saghafi M, Mahboubi F, Mohajerzadeh S (2014) Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors. Synth Met 198:345–356

    Article  CAS  Google Scholar 

  22. Zheng L, Wang X, An H, et al. (2011) The preparation and performance of flocculent polyaniline/carbon nanotubes composite electrode material for supercapacitors. J Solid State Electrochem 15:675–681

    Article  CAS  Google Scholar 

  23. Li F, Shi J, Qin X (2010) Synthesis and supercapacitor characteristics of PANI/CNTs composites. Chin Sci Bull 55:1100–1106

    Article  CAS  Google Scholar 

  24. Kong LB, Zhang J, An JJ, et al (2008) MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode. In: J Mater Sci pp 3664–3669

  25. Gao B, Fu Q, Su L, et al. (2010) Preparation and electrochemical properties of polyaniline doped with benzenesulfonic functionalized multi-walled carbon nanotubes. Electrochim Acta 55:2311–2318

    Article  CAS  Google Scholar 

  26. Bal Sydulu S, Palaniappan S, Srinivas P (2013) Nano fibre polyaniline containing long chain and small molecule dopants and carbon composites for supercapacitor. Electrochim Acta 95:251–259

    Article  Google Scholar 

  27. Deshmukh PR, Shinde NM, Patil SV, et al. (2013) Supercapacitive behavior of polyaniline thin films deposited on fluorine doped tin oxide (FTO) substrates by microwave-assisted chemical route. Chem Eng J 223:572–577

    Article  CAS  Google Scholar 

  28. Sydulu Singu B, Srinivasan P, Pabba S (2012) Benzoyl peroxide oxidation route to nano form polyaniline salt containing dual dopants for pseudocapacitor. J Electrochem Soc 159:A6–A13

    Article  CAS  Google Scholar 

  29. Dhibar S, Bhattacharya P, Hatui G, et al. (2014) Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: efficient electrode material for high performance supercapacitors. ACS Sustain Chem Eng 2:1114–1127

    Article  CAS  Google Scholar 

  30. Xiong S, Yuan C, Zhang X, et al. (2009) Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem - A Eur J 15:5320–5326

    Article  CAS  Google Scholar 

  31. Park JC, Kim J, Kwon H, Song H (2009) Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater 21:803–807

    Article  CAS  Google Scholar 

  32. Xia X, Tu J, Wang X, et al. (2011) Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. J Mater Chem 21:671–679

    Article  CAS  Google Scholar 

  33. Yuan C, Chen L, Gao B, et al. (2009) Synthesis and utilization of RuO 2 ·xH 2 O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors. J Mater Chem 19:246–252

    Article  CAS  Google Scholar 

  34. Choi BG, Yang M, Hong WH, et al. (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6:4020–4028

    Article  CAS  Google Scholar 

  35. Yang C, Zhou M, Xu Q, et al. (2013) Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors. Phys Chem Chem Phys 15:19730–19740

    Article  CAS  Google Scholar 

  36. Zhu YG, Wang Y, Shi Y, et al. (2014) CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 3:46–54

    Article  CAS  Google Scholar 

  37. Palmas S, Mascia M, Vacca A, et al. (2014) Analysis of photocurrent and capacitance of TiO2 nanotube–polyaniline hybrid composites synthesized through electroreduction of an aryldiazonium salt. RSC Adv 4:23957–23965

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Encouragement for this research work by the Council of Scientific and Industrial Research under the Solar Mission Project is gratefully acknowledged. Author SBS thanks UGC, New Delhi, for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bal Sydulu Singu.

Electronic supplementary material

Fig. S

(DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sydulu Singu, B., Srinivasan, P. & Yoon, K.R. Emulsion polymerization method for polyaniline-multiwalled carbon nanotube nanocomposites as supercapacitor materials. J Solid State Electrochem 20, 3447–3457 (2016). https://doi.org/10.1007/s10008-016-3309-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3309-1

Keywords

Navigation