Skip to main content
Log in

An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

High-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays (TNTs) and TiO2 quantum dot blocking layers are fabricated. The free-standing TNT membranes with perfect ordered morphology are prepared by three times of anodic oxidation on Ti foils. These TNT membranes can be easily transported to conductive glasses to fabricate front-side illuminated photoelectrodes. By changing anodic oxidation duration, the thickness of TNT membranes can be controlled, which shows significant influence on the UV-Vis reflectance and absorption abilities of TNT-based photoelectrodes and further influence photovoltaic performance of dye-sensitized solar cells (DSSCs). The highest power conversion efficiency (PCE) of DSSCs about 6.21 % can be obtained by using TNT membranes prepared with anodic oxidation of 3 h. For further improving photovoltaic performance of DSSCs, TiO2 quantum dot (QDs) blocking layers are inserted between conductive glasses and TNT membranes in the photoelectrodes, which show remarkable effects. The highest PCE of DSSCs with this kind of blocking layers can increase to 8.43 %, producing 35.75 % enhancement compared with that of the counterparts without TiO2 QD blocking layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115:2136–2173

    Article  CAS  Google Scholar 

  2. Bella F, Gerbaldi C, Barolo C, Grätzel M (2015) Aqueous dye-sensitized solar cells. Chem Soc Rev 44:3431–3473

    Article  CAS  Google Scholar 

  3. Lan Z, Wu J, Lin J, Huang M (2014) TiCl4 assisted formation of nano-TiO2 secondary structure in photoactive electrodes for high efficiency dye-sensitized solar cells. Sci China Chem 57:888–894

    Article  CAS  Google Scholar 

  4. Lan Z, Liu L, Huang M, Wu J, Lin J (2015) Preparation of nano-flower-like SnO2 particles and their applications in efficient CdS quantum dots sensitized solar cells. J Mater Sci Mater Electron 26:7914–7920

    Article  CAS  Google Scholar 

  5. Szkoda M, Siuzdak K, Oleksiak AL (2016) Optimization of electrochemical doping approach resulting in highly photoactive iodine-doped titania nanotubes. J Solid State Electrochem 20:563–569

    Article  CAS  Google Scholar 

  6. Benkstein KD, Kopidakis N, Lagemaat JVD, Frank AJ (2003) Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B 107:7759–7767

    Article  CAS  Google Scholar 

  7. Lagemaat JVD, Frank AJ (2001) Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J Phys Chem B 105:11194–11205

    Article  Google Scholar 

  8. Ananthakumar S, Ramkumar J, Babu SM (2014) Effect of co-sensitization of CdSe nanoparticles with N3 dye on TiO2 nanotubes. Sol Energy 106:136–142

    Article  CAS  Google Scholar 

  9. Kuang D, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Grätzel M (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2:1113–1116

    Article  CAS  Google Scholar 

  10. Qi L, Yin Z, Zhang S, Ouyang Q, Li C, Chen Y (2014) The increased interface charge transfer in dye-sensitized solar cells based on well-ordered TiO2 nanotube arrays with different lengths. J Mater Res 29:745–752

    Article  CAS  Google Scholar 

  11. Momeni MM, Hosseini MG (2015) Different TiO2 nanotubes for back illuminated dye sensitized solar cell: fabrication, characterization and electrochemical impedance properties of DSSCs. J Mater Sci Mater Electron 25:5027–5034

    Article  Google Scholar 

  12. Gao S, Lan Z, Wu W, Que L, Wu J, Lin J, Huang M (2014) Fabrication and photovoltaic performance of high efficiency front-illuminated dye-sensitized solar cell based on ordered TiO2 nanotube arrays. Acta Phys -Chim Sin 30:446–452

    CAS  Google Scholar 

  13. Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB (2008) Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J Am Chem Soc 130:13364–13372

    Article  CAS  Google Scholar 

  14. Zeng T, Ni H, Su X, Chen Y, Jiang Y (2015) Highly crystalline titania nanotube arrays realized by hydrothermal vapor route and used as front-illuminated photoanode in dye sensitized solar cells. J Power Sources 283:443–451

    Article  CAS  Google Scholar 

  15. Momeni MM, Mirhosseini M, Chavoshi M, Hakimizade A (2016) The effect of anodizing voltage on morphology and photocatalytic activity of tantalum oxide nanostructure. J Mater Sci Mater Electron 27:3941–3947

    Article  CAS  Google Scholar 

  16. Momeni MM, Mirhosseini M, Chavoshi M (2016) Growth and characterization of Ta2O5 nanorod and WTa2O5 nanowire films on the tantalum substrates by a facile one-step hydrothermal method. Ceram Int 42:9133–9138

    Article  CAS  Google Scholar 

  17. Momeni MM, Ghayeb Y (2016) Fabrication, characterization and photoelectrochemical performance of chromium-sensitized titania nanotubes as efficient photoanodes for solar water splitting. J Solid State Electrochem 20:683–689

    Article  CAS  Google Scholar 

  18. Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloys Compd 637:393–400

    Article  CAS  Google Scholar 

  19. Momeni MM, Hakimian M, Kazempour A (2015) In-situ manganese doping of TiO2 nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: a good visible-light photocatalyst. Ceram Int 41:13692–13701

    Article  CAS  Google Scholar 

  20. Momeni MM, Ghayeb Y (2015) Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting. J Electroanal Chem 751:43–48

    Article  CAS  Google Scholar 

  21. Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram Int 41:8735–8741

    Article  CAS  Google Scholar 

  22. Momeni MM, Ghayeb Y (2016) Fabrication and characterization of zinc oxide-decorated titania nanoporous by electrochemical anodizing-chemical bath deposition techniques: visible light active photocatalysts with good stability. J Iran Chem Soc 13:481–488

    Article  CAS  Google Scholar 

  23. Momeni MM, Ghayeb Y (2015) Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J Appl Electrochem 45:557–566

    Article  CAS  Google Scholar 

  24. Momeni MM, Ghayeb Y, Davarzadeh M (2015) Single-step electrochemical anodization for synthesis of hierarchical WO3–TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. J Electroanal Chem 739:149–155

    Article  CAS  Google Scholar 

  25. Momeni MM, Ghayeb Y (2016) Cobalt modified tungsten–titania nanotube composite photoanodes for photoelectrochemical solar water splitting. J Mater Sci Mater Electron 27:3318–3327

    Article  CAS  Google Scholar 

  26. Momeni MM, Ghayeb Y (2016) Preparation of cobalt coated TiO2 and WO3–TiO2 nanotube films via photo-assisted deposition with enhanced photocatalytic activity under visible light illumination. Ceram Int 42:7014–7022

    Article  CAS  Google Scholar 

  27. Momeni MM (2015) Fabrication of copper decorated tungsten oxide–titanium oxide nanotubes by photochemical deposition technique and their photocatalytic application under visible light. Appl Surf Sci 357:160–166

    Article  CAS  Google Scholar 

  28. Momeni MM, Ghayeb Y (2016) Photochemical deposition of platinum on titanium dioxide–tungsten trioxide nanocomposites: an efficient photocatalyst under visible light irradiation. J Mater Sci Mater Electron 27:1062–1069

    Article  CAS  Google Scholar 

  29. Momeni MM, Ghayeb Y (2016) Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods. J Mol Catal A Chem 417:107–115

    Article  CAS  Google Scholar 

  30. Momeni MM, Nazari Z (2016) Preparation of TiO2 and WO3–TiO2 nanotubes decorated with PbO nanoparticles by chemical bath deposition process: a stable and efficient photocatalyst. Ceram Int 42:8691–8697

    Article  CAS  Google Scholar 

  31. Que L, Lan Z, Wu W, Wu J, Lin J, Huang M (2014) Titanium dioxide quantum dots: magic materials for high performance underlayers inserted into dye-sensitized solar cells. J Power Sources 268:670–676

    Article  CAS  Google Scholar 

  32. Choi J, Park SH, Kwon YS, Lim J, Song IY, Park T (2012) Facile fabrication of aligned doubly open-ended TiO2 nanotubes, via a selective etching process, for use in front-illuminated dye sensitized solar cells. Chem Commun 48:8748–8750

    Article  CAS  Google Scholar 

  33. Li ZQ, Que YP, Mo LE, Chen WC, Ding Y, Ma YM, Jiang L, Hu LH, Dai SY (2015) One-pot synthesis of mesoporous TiO2 microspheres and its application for high-efficiency dye-sensitized solar cells. ACS Appl Mater Interfaces 7:10928–10934

    Article  CAS  Google Scholar 

  34. Wu J, Hao S, Lin J, Huang M, Huang Y, Lan Z, Li P (2008) Crystal morphology of anatase titania nanocrystals used in dye-sensitized solar cells. Cryst Growth Des 8:247–252

    Article  CAS  Google Scholar 

  35. Lin J, Nattestad A, Yu H, Bai Y, Wang L, Doua SX, Kim JH (2014) Highly connected hierarchical textured TiO2 spheres as photoanodes for dye-sensitized solar cells. J Mater Chem A 2:8902–8909

    Article  CAS  Google Scholar 

  36. Kushwaha R, Chauhan R, Srivastava P, Bahadur L (2015) Synthesis and characterization of nitrogen-doped TiO2 samples and their application as thin film electrodes in dye-sensitized solar cells. J Solid State Electrochem 19:507–517

    Article  CAS  Google Scholar 

  37. Wei L, Yang Y, Fan R, Wang P, Dong Y, Zhou W, Luan T (2015) Enhance the performance of co-sensitized solar cell by a series efficient pyridine-anchor co-adsorbents of NN′-bis ((pyridin-2-yl) methylene)-p-phenylenediimine and a ruthenium dye of N719. J Power Sources 293:203–212

    Article  CAS  Google Scholar 

  38. Lan Z, Wu J, Lin J, Huang M (2011) A facile way to fabricate highly efficient photoelectrodes with chemical sintered scattering layers for dye-sensitized solar cells. J Mater Chem 21:15552–15557

    Article  CAS  Google Scholar 

  39. Hossain FM, Evteev AV, Belova IV, Nowotny J, Murch GE (2010) Electronic and optical properties of anatase TiO2 nanotubes. Comput Mater Sci 48:854–858

    Article  CAS  Google Scholar 

  40. Berger T, Satoca DM, Jankulovska M, Villarreal TL, Gómez R (2012) The electrochemistry of nanostructured titanium dioxide electrodes. ChemPhysChem 13:2824–2875

    Article  CAS  Google Scholar 

  41. Choi MG, Sung YM (2014) Preparation of double layer porous films of titanium/titanium oxide for photoelectrochemical cells application. Opt Mater 36:1430–1435

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the supports of the National Natural Science Foundation of China (Nos. U1205112, 51002053, and 61474047), the Fujian Provincial Science Foundation for Distinguished Young Scholars (2015J06011), the Programs for Prominent Young Talents and New Century Excellent Talents in Fujian Province University, and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-YX102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Z., Wu, W., Zhang, S. et al. An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers. J Solid State Electrochem 20, 2643–2650 (2016). https://doi.org/10.1007/s10008-016-3263-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3263-y

Keywords

Navigation