Skip to main content
Log in

Effect of Pb-underpotential deposition on anodic dissolution and passivation of pure Fe and Fe-Ni alloys in acidic perchlorate solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The potentio-dynamic polarization curves of pure Fe, Fe-30 Ni, and Fe-70 Ni alloys in acidic perchlorate solutions (pH 1.9) without and with 10−3 M Pb2+ were measured to investigate the effect of Pb-underpotential deposition (Pb-UPD) on anodic dissolution and passivation in relation to Pb-induced stress corrosion cracking (Pb-SCC) of Ni base alloys. The addition of 10−3 M Pb2+ shifts the open circuit potentials of pure Fe and Fe-Ni alloys toward noble direction to inhibit the anodic dissolution and promote the passivation, which results from Pb-UPD on substrate metals. The electro-desorption of Pb proceeds with anodic potential sweep and the anodic dissolution is enhanced when the surface coverage of Pb is reduced to a critical level. Tafel slopes (b + = 8.5∼15 mV decade−1) of anodic dissolution for pure Fe and Fe-Ni alloys in the presence of Pb2+ are significantly low as compared with those (b + = 34∼40 mV decade−1) in the absence of Pb2+, which reflects on the rapid enhancement in surface reactivity as a result of electro-desorption of Pb. It is found that the potential region in which anodic dissolution is inhibited by Pb-UPD is located within the potential window of Pb-UPD estimated from the differences in work-function between substrate metals and Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Staehle RW (2004) Proc. 11 th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. American Nuclear Society, p 381–424.

  2. Staehle RW (2005) Proc. 12 th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Minerals, Metals and Materials Society, p 163–1210.

  3. Lu YC (2005) Proc. 12 th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. Minerals, Metals and Materials Society, p 1211–1219.

  4. Lu BT, Luo JL, Yu YC (2007) J Electrochem Soc 154:C379–C389

    Article  CAS  Google Scholar 

  5. Costa D, Talah H, Marcus P, le Cavar M, Gelpi A (1995) Proc. 7 th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. NACE, Houston, p 199–208.

  6. Hwang SS, Kim JS (2002) Corrosion 58:392–398

    Article  CAS  Google Scholar 

  7. Radhakrishnan H, Carcea AG, Newman RC (2005) Corros Sci 47:3234–3248

    Article  CAS  Google Scholar 

  8. Seo M, Fushimi K, Habazaki H, Nakayama T (2008) Corros Sci 50:3139–3146

    Article  CAS  Google Scholar 

  9. Kolb DM, Prazasnyski M, Gerischer H (1974) J Electroanal Chem 54:25–38

    Article  CAS  Google Scholar 

  10. Kolb DM (1978) In: Gerischer H, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering vol 11. Physical and electrochemical properties of metal monolayers on metallic substrates. John Wiley & Sons, New York, p 125–271

    Google Scholar 

  11. Herrero E, Buller LJ, Abruna HD (2001) Chem Rev 101:1897–1930

    Article  CAS  Google Scholar 

  12. Lafranconi G, Mazza F, Sivieri E, Torchio S (1978) Corros Sci 18:617–629

    Article  CAS  Google Scholar 

  13. Drazic DM, Vorkapic LZ (1978) Corros Sci 18:907–910

    Article  CAS  Google Scholar 

  14. Jüttner K (1980) Werkst Korros 31:358–363

    Article  Google Scholar 

  15. Seo M, Fushimi K, Aoki Y, Habazaki H, Inaba M, Yokomizo M, Hayakawa T, Nakayama T (2012) J Electroanal Chem 671:7–15

    Article  CAS  Google Scholar 

  16. Koma A, Yagi M, Tsukada M, Aono M (1987) Handbook of surface physics technology. Maruzen Co. Tokyo, p. 535

  17. Economy G, Speiser R, Beck FH, Fontana MG (1961) J Electrochem Soc 108:337–343

    Article  CAS  Google Scholar 

  18. Condit DO (1972) Corros Sci 12:451–462

    Article  CAS  Google Scholar 

  19. Heusler KE (1982) In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements vol 9 a. Marcel Dekker Inc, New York, p 229–381

    Google Scholar 

  20. Brown IJ, Sotiropoulos S (2001) Electrochim Acta 46:2711–2720

    Article  CAS  Google Scholar 

  21. Seo M, Hyono A, Habazaki H, Nakayama T (2014) J Electrochem Soc 161:C550–C556

    Article  Google Scholar 

  22. Heusler KE, Gaiser L (1968) Electrochim Acta 13:59–60

    Article  CAS  Google Scholar 

  23. Arvia AJ, Posadas D (1975) In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements vol 3. Marcel Dekker Inc, New York, p 298–309

    Google Scholar 

  24. Rothschild JA, Eizenberg M (2010) Phys Rev B 81:224021–1-8.

  25. Seo M, Sato N (1978) Corros Sci 18:577–589

    Article  CAS  Google Scholar 

  26. Seo M, Sato N (1983) Oxid Met 19:151–163

    Article  CAS  Google Scholar 

  27. Fain SC Jr, McDavid JM (1974) Phys Rev B 9:5099–5107

    Article  CAS  Google Scholar 

  28. Ishi R, Matsumura K, Sakai A, Sakata T (2001) App Surf Sci 167-170:658–661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, M., Habazaki, H. & Nakayama, T. Effect of Pb-underpotential deposition on anodic dissolution and passivation of pure Fe and Fe-Ni alloys in acidic perchlorate solution. J Solid State Electrochem 20, 3133–3142 (2016). https://doi.org/10.1007/s10008-016-3210-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3210-y

Keywords

Navigation