Skip to main content
Log in

Effect of bath temperature on electrodeposition behaviour and corrosion properties of amorphous Fe–P alloys obtained from additive-free chloride baths

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Fe-based amorphous alloys are an eco-friendly alternative to Ni- and Co-based amorphous alloys, which are not sustainable. Herein, amorphous Fe–P alloys were electrodeposited from an eco-friendly aqueous electrolyte. The influence of bath temperature on the electrochemical behaviour during Fe–P alloy deposition was investigated using linear-sweep voltammetry, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The morphology, P content and phase structure were characterized via scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and differential scanning calorimetry. The electrochemical corrosion behaviour in 3.5 wt% NaCl solution was studied using potentiodynamic polarization curves and EIS spectra. The results showed that an increase in bath temperature leads to a positive shift in the inductive co-deposition potential and increases the reaction rate. At bath temperatures of 20–60°C, the P content in deposits varied in the range of 17.07–21.13 wt% and the phase structure was amorphous. Although the amorphous alloys lacked crystalline defects, the P content had a marginal effect on the corrosion properties, whereas the surface morphology significantly influenced the corrosion properties. The amorphous Fe–P alloys fabricated in this study exhibit superior corrosion properties to almost all electrodeposited amorphous alloys reported in the literature, demonstrating their potential for corrosion protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Liu X B, Bi J Z, Meng Z Y, Ke Y B, Li R and Zhang T 2021 Materials 14 279

    Article  CAS  PubMed  Google Scholar 

  2. Hofmann D C, Andersen L M, Kolodziejska J, Roberts S N, Borgonia J P, Johnson W L et al 2017 Adv. Eng. Mater. 19 1600541

    Article  Google Scholar 

  3. Ji X L, Shan Y P, Ji C C, Wang H and Zhao Z X 2021 Wear 476 203684

    Article  CAS  Google Scholar 

  4. Huang L, Cao Z, Meyer H, Liaw P, Garlea E, Dunlap J et al 2011 Acta Biomater. 7 395

    Article  CAS  PubMed  Google Scholar 

  5. Carmo M, Sekol R C, Ding S, Kumar G, Schroers J and Taylor A D 2011 ACS Nano 5 2979

    Article  CAS  PubMed  Google Scholar 

  6. Sadeghilaridjani M, Ayyagari A, Muskeri S, Hasannaeimi V, Jiang J and Mukherjee S 2020 JOM 72 123

    Article  CAS  Google Scholar 

  7. Ham G S, Kim K W, Cho G S, Kim C P and Lee K A 2020 Mater. Des. 195 109043

    Article  CAS  Google Scholar 

  8. Kovalska N, Tsyntsaru N, Cesiulis H, Gebert A, Fornell J, Pellicer E et al 2019 Coatings 9 189

    Article  Google Scholar 

  9. Liu T, Ji B, Wu Y, Liu Z G and Wang W 2022 J. Phys. Chem. C 126 15472

    Article  CAS  Google Scholar 

  10. Guo C Y, Fang Y N, Wu B, Lan S, Peng G, Wang X L et al 2016 Mater. Res. Lett. 5 293

    Article  Google Scholar 

  11. Bahgat Radwan A, Ali K, Shakoor R A, Mohammed H, Alsalama T, Kahraman R et al 2018 Appl. Surf. Sci. 457 956

    Article  CAS  Google Scholar 

  12. Ma C B, Cao F H, Zhang Z and Zhang J Q 2006 Appl. Surf. Sci. 253 2251

    Article  CAS  Google Scholar 

  13. Allahyarzadeh M H, Aliofkhazraei M, Rezvanian A R, Torabinejad V and Sabour Rouhaghdam A R 2016 Surf. Coat. Technol. 307 978

    Article  CAS  Google Scholar 

  14. Radwan A B and Shakoor R A 2020 Ceram. Int. 46 9863

    Article  CAS  Google Scholar 

  15. Li J X, Shi Y N and Li X Y 2021 Nanomaterials 11 681

    Article  CAS  PubMed  Google Scholar 

  16. Dulal S M S I, Yun H J, Shin C B and Kim C K 2007 Electrochim. Acta 53 934

    Article  CAS  Google Scholar 

  17. Lew K S, Raja M, Thanikaikarasan S, Kim T, Kim Y D and Mahalingam T 2008 Mater. Chem. Phys. 112 249

    Article  CAS  Google Scholar 

  18. Mulone A, Nicolenco A, Imaz N, Martinez-Nogues V, Tsyntsaru N, Cesiulis H et al 2019 Coatings 9 66

    Article  Google Scholar 

  19. Brito M M, Zacarin M G, Arruda R A, Barbano E P and Carlos I A 2020 Thin Solid Films 699 137862

    Article  CAS  Google Scholar 

  20. Mikó A, Hempelmann R, Lakatos-Varsányi M and Kálmán E 2006 Electrochem. Solid-State Lett. 9 126

    Article  Google Scholar 

  21. Xuan C J, Wang J, Xia W W, Peng Z K, Wu Z X, Lei W et al 2017 ACS Appl. Mater. Interfaces 9 26134

    Article  CAS  PubMed  Google Scholar 

  22. Sequeira C A C, Santos D M F and Brito P S D 2011 Energy 36 847

    Article  CAS  Google Scholar 

  23. Hrubovčáková M, Kupková M and Džupon M 2016 Adv. Mater. Sci. Eng. 2016 6257368

    Article  Google Scholar 

  24. Mostavan A, Paternoster C, Tolouei R, Ghali E, Dubé D and Mantovani D 2017 Mater. Sci. Eng. C Mater. Biol. Appl. 70 195

    Article  CAS  Google Scholar 

  25. Zarebidaki A and Seyedzadeh S H L 2023 J. Electrochem. Soc. 170 022501

    Article  CAS  Google Scholar 

  26. Kovalska N, Hansal W E G, Tsyntsaru N, Cesiulis H, Gebert A and Kautek W 2019 Trans. IMF 97 89

    Article  CAS  Google Scholar 

  27. Wang F, Itoh K and Watanabe T 2003 Mater. Trans. 44 127

    Article  Google Scholar 

  28. Zečević S K, Zotović J B, Gojković S L and Radmilović V 1998 J. Electroanal. Chem. 448 245

    Article  Google Scholar 

  29. Gorker L and Dimitrov V 2009 Prog. React. Kinet. Mech. 34 127

    Article  CAS  Google Scholar 

  30. Liu Y, Xu X, Sadd M, Kapitanova O O, Krivchenko V A, Ban J et al 2021 Adv. Sci. 8 2003301

    Article  CAS  Google Scholar 

  31. Kovalska N, Pfaffeneder-Kmen M, Tsyntsaru N, Mann R, Henrikas C, Hansal W et al 2019 Electrochim. Acta 309 450

    Article  CAS  Google Scholar 

  32. Chat-Wilk K, Rudnik E and Włoch G 2022 J. Electrochem. Soc. 169 092515

    Article  CAS  Google Scholar 

  33. Ye M C, Ding T T, Hao Z and He F J 2021 Trans. Nonferrous Met. Soc. China 31 1842

    Article  CAS  Google Scholar 

  34. Oliveira J A M, de Almeida A F, Campos A R N, Prasad S, Alves J J N and de Santana R A C 2021 J. Alloys Compd. 853 157104

    Article  CAS  Google Scholar 

  35. Okazy M A, Zewail T M and Farag H A M 2018 Alex. Eng. J. 57 3117

    Article  Google Scholar 

  36. Bae S H, Oue S, Taninouchi Y K, Son I and Nakano H 2022 Tetsu-to-Hagané 108 120 (in Japanese)

    Article  Google Scholar 

  37. Laszczyńska A, Winiarski J, Szczygieł B and Szczygieł I 2016 Appl. Surf. Sci. 369 224

    Article  Google Scholar 

  38. Liu S B, Shohji I, Kobayashi T, Hirohashi J, Wake T, Yamamoto H and Kamakoshi Y 2021 J. Electroanal. Chem. 897 115582

    Article  CAS  Google Scholar 

  39. Ji X L, Jiang S, Li H B, Yan C Y and Jiang L F 2012 Met. Mater. Int. 18 655

    Article  CAS  Google Scholar 

  40. Mohan S and Raj V 2013 Trans. IMF 83 194

    Article  Google Scholar 

  41. Sharma A, Das K, Fecht H J and Das S 2014 Appl. Surf. Sci. 314 516

    Article  CAS  Google Scholar 

  42. Mansfeld F 1973 Corrosion 29 397

    Article  Google Scholar 

  43. Kolle M K, Shajahan S and Basu A 2020 Metall. Mater. Trans. A 51 3721

    Article  CAS  Google Scholar 

  44. Gao J, Wu Y C, Dai X R, Zhang Z Y, Zhu H, Xu K et al 2022 J. Appl. Electrochem. 52 1647

    Article  CAS  Google Scholar 

  45. Mouanga M and Berçot P 2010 Corros. Sci. 52 3993

    Article  CAS  Google Scholar 

  46. Ma C Y, Wu F F, Ning Y M, Xia F F and Liu Y F 2014 Ceram. Int. 40 9279

    Article  CAS  Google Scholar 

  47. Song Q Q, Li A M, Qi D, Qin W O, Li Y T and Zhan Y Z 2023 Mater. Chem. Phys. 295 126990

    Article  CAS  Google Scholar 

  48. Fayyaz O, Khan A, Shakoor R A, Hasan A, Yusuf M M, Montemor M F et al 2021 Sci. Rep. 11 5327

    Article  CAS  PubMed  Google Scholar 

  49. Xiao J J, Yu J K, Guo F Y, Qiao Q, Yang H B and Guo Y Q 2020 Coatings 10 795

    Article  CAS  Google Scholar 

  50. Tian M J, Jian Z Y, Chang F G and Hai R 2023 J. Mater. Sci. 58 1886

    Article  CAS  Google Scholar 

  51. Chintada V B and Koona R 2018 J. Bio-Tribo-Corros. 4 68

    Article  Google Scholar 

  52. Hadipour A, Rahsepar M and Hayatdavoudi H 2018 Surf. Eng. 35 883

    Article  Google Scholar 

  53. Wang Y, Kang M, Fu X Q and Wang X S 2014 Trans. Chin. Soc. Agric. Eng. 30 54 (in Chinese)

    CAS  Google Scholar 

  54. Wang Y X, Cao D, Gao W D, Qiao Y X, Jin Y X, Cheng G et al 2019 J. Alloys Compd. 792 617

    Article  CAS  Google Scholar 

  55. Wang S L and Song Y J 2012 Chin. J. Nonferrous Met. 22 496 (in Chinese)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Fundamental Research Funds for the Central Universities (Grant Number 3132023515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yu, J., Li, Y. et al. Effect of bath temperature on electrodeposition behaviour and corrosion properties of amorphous Fe–P alloys obtained from additive-free chloride baths. Bull Mater Sci 47, 92 (2024). https://doi.org/10.1007/s12034-024-03193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03193-5

Keywords

Navigation