Skip to main content
Log in

Cetyltrimethylammonium bromide assisted self-assembly of phosphotungstic acid on graphene oxide nanosheets for selective determination of tryptophan

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A one-step method was developed to prepare cetyltrimethylammonium bromide (CTAB) and phosphotungstic acid (PTA)-modified graphene oxide (GO) (PTA/CTAB/GO). In a system containing CTAB, GO, and PTA, negatively charged GO forms stable complex with positively charged CTAB, which assembled on the GO nanosheet surface. And then, with CTAB molecules as the molecular linker, PTA was loaded on CTAB/GO hybrid by electrostatic interaction. The PTA/CTAB/GO was characterized with Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) and subsequently used in the construction of tryptophan (Trp) sensor. Compared with the CTAB/GO, PTA/CTAB/GO exhibits better electrocatalytic activity towards the oxidation of Trp, which is attributed to the synergistic effect of PTA and GO. The differential pulse voltammetry (DPV) curve of Trp at PTA/CTAB/GO/glassy carbon electrode (GCE) exhibited two linear dynamic ranges with a detection limit of 0.02 μM (S/N = 3). In addition, the proposed sensor is successfully employed to detect Trp in the real samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fiorucci AR, Cavalheiro ÉTG (2002) The use of carbon paste electrode in the direct voltammetric determination of tryptophan in pharmaceutical formulations. J Pharm Biomed Anal 28:909–915

    Article  CAS  Google Scholar 

  2. Kochen W, Steinhart H (1994) L-Tryptophan-current prospects in medicine and drug safety, de-gruyter, Berlin.

  3. Noristani HN, Verkhratsky A, Rodriguez JJ (2012) High tryptophan diet reduces CA1 intraneuronal β-amyloid in the triple transgenic mouse model of Alzheimer’s disease. Aging Cell 11:810–822

    Article  CAS  Google Scholar 

  4. Segall PE, Timiras PS (1976) Patho-physiologic findings after chronic tryptophan deficiency in rats: a model for delayed growth and aging. Mech Ageing Dev 5:109–124

    Article  CAS  Google Scholar 

  5. Carew LBJ, Alster FA, Foss DC, Scanes CG (1983) Effect of a tryptophan deficiency on thyroid gland, growth hormone and testicular functions in chickens. J Nutr 113:1756–1765

    CAS  Google Scholar 

  6. Lian W, Ma DJ, Xu X, Chen Y, Wu YL (2012) Rapid high-performance liquid chromatography method for determination of tryptophan in gastric juice. J Digest Dis 13:100–106

    Article  CAS  Google Scholar 

  7. Zhu W, Stevens A, Dettmer K, Gottfried E, Hoves S, Kreutz M, Holler E, Canelas AB, Kema I, Oefner PJ (2011) Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 401:3249–3261

    Article  CAS  Google Scholar 

  8. Li H, Li F, Han C, Cui Z, Xie G, Zhang A (2010) Highly sensitive and selective tryptophan colorimetric sensor based on 4,4-bipyridine-functionalized silver nanoparticles. Sensors Actuators B Chem 145:194–199

    Article  CAS  Google Scholar 

  9. Reynolds DM (2003) Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy. Water Res 37:3055–3060

    Article  CAS  Google Scholar 

  10. Malone MA, Zuo H, Lunte SM, Smyth MR (1995) Determination of tryptophan and kynurenine in brain microdialysis samples by capillary electrophoresis with electrochemical detection. J Chromatogr A 700:73–80

    Article  CAS  Google Scholar 

  11. Noroozifar M, Khorasani-Motlagh M, Nadiki HH, Hadavi MS, Foroughi MM (2014) Modified fluorine-doped tin oxide electrode with inorganic ruthenium red dye-multiwalled carbon nanotubes for simultaneous determination of a dopamine, uric acid, and tryptophan. Sensors Actuators B Chem 204:333–341

    Article  CAS  Google Scholar 

  12. Yang FC, Xie QJ, Zhang HZ, Yu S, Zhang X, Shen YH (2015) Simultaneous determination of ascorbic acid, uric acid, tryptophan and adenine using carbon-supported NiCoO2 nanoparticles. Sensors Actuators B Chem 210:232–240

    Article  CAS  Google Scholar 

  13. Baytak AK, Aslanoglu M (2015) Voltammetric quantification of tryptophan using a MWCNT modified GCE decorated with electrochemically produced nanoparticles of nickel. Sensors Actuators B Chem 220:1161–1168

    Article  CAS  Google Scholar 

  14. Beitollahi H, Gholami A, Ganjali MR (2015) Preparation, characterization and electrochemical application of Ag-ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode. Mater Sci Eng C 57:107–112

    Article  CAS  Google Scholar 

  15. Han JF, Wang QQ, Zhai JF, Han L, Dong SJ (2015) An amperometric sensor for detection of tryptophan based on a pristine multi-walled carbon nanotube/graphene oxide hybrid. Analyst 140:5295–5300

    Article  CAS  Google Scholar 

  16. Tadayon F, Sepehri Z (2015) A new electrochemical sensor based on a nitrogen doped graphene/CuCo2O4 nanocomposite for simultaneous determination of dopamine, melatonin and tryptophan. RSC Adv 5:65560–65568

    Article  CAS  Google Scholar 

  17. Tang X, Liu Y, Hou H, You T (2010) Electrochemical determination of L-tryptophan, L-tyrosine and L-cysteine using electrospun carbon nanofibers modified electrode. Talanta 80:2182–2186

    Article  CAS  Google Scholar 

  18. Huang KJ, Xu CX, Xie WZ, Wang W (2009) Electrochemical behavior and voltammetric determination of tryptophan based on 4-aminobenzoic acid polymer film modified glassy carbon electrode. Colloids Surf B 74:167–171

    Article  CAS  Google Scholar 

  19. Shahrokhian S, Fotouhi L (2007) Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan. Sensors Actuators B Chem 123:942–949

    Article  CAS  Google Scholar 

  20. Xia X, Zheng Z, Zhang Y, Zhao X, Wang C (2014) Synthesis of Ag-MoS2/chitosan nanocomposite and its application for catalytic oxidation of tryptophan. Sensors Actuators B Chem 192:42–50

    Article  CAS  Google Scholar 

  21. Liu HH, Chen YL, Liu YC, Yang ZS (2013) A sensitive sensor for determination of L-tryptophan based on gold nanoparticles/poly(alizarin red S)-modified glassy carbon electrode. J Solid State Electrochem 17:2623–2631

    Article  CAS  Google Scholar 

  22. Song YF, Tsunashima R (2012) Recent advances on polyoxometalate-based molecular and composite materials. Chem Soc Rev 41:7384–7402

    Article  CAS  Google Scholar 

  23. Chikin AI, Chernyak AV, Jin Z, Naumova YS, Ukshe AE, Smirnova NV, Volkov VI, Dobrovolsky YA (2012) Mobility of protons in 12-phosphotungstic acid and its acid and neutral salts. J Solid State Electrochem 16:2767–2775

    Article  CAS  Google Scholar 

  24. Gan T, Hu CG, Chen ZL, Hu SS (2011) Novel electrocatalytic system for the oxidation of methyl jasmonate based on layer-by-layer assembling of montmorillonite and phosphotungstic acid nanohybrid on graphite electrode. Electrochim Acta 56:4512–4517

    Article  CAS  Google Scholar 

  25. Yuan JH, Jin XL, Li N, Chen JR, Miao JG, Zhang QX, Niu L, Song JX (2011) Large scale load of phosphotungstic acid on multiwalled carbon nanotubes with a grafted poly(4-vinylpyridine) linker. Electrochim Acta 56:10069–10076

    Article  CAS  Google Scholar 

  26. Gan T, Sun JY, Cao SQ, Gao FX, Zhang YX, Yang YQ (2012) One-step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of sunset yellow and tartrazine. Electrochim Acta 74:151–157

    Article  CAS  Google Scholar 

  27. Gan T, Hu CG, Sun Z, Hu SS (2013) Facile synthesis of water-soluble fullerene–graphene oxide composites for electrodeposition of phosphotungstic acid-based electrocatalysts. Electrochim Acta 111:738–745

    Article  CAS  Google Scholar 

  28. Gan T, Hu CG, Hu SS (2014) Preparation of graphene oxide–fullerene/phosphotungstic acid films and their application as sensor for the determination of cis-jasmone. Anal Methods 6:9220–9227

    Article  CAS  Google Scholar 

  29. Xu J, Xu SM, Feng S, Hao YJ, Wang JD (2015) Electrochemical sensor for detecting both oxidizing and reducing compounds based on poly(ethyleneimine)/phosphotungstic acid multilayer film modified electrode. Electrochim Acta 174:706–711

    Article  CAS  Google Scholar 

  30. Ragupathy D, Gopalan AI, Lee KP, Manesh KM (2008) Electro-assisted fabrication of layer-by-layer assembled poly(2, 5-dimethoxyaniline)/phosphotungstic acid modified electrode and electrocatalytic oxidation of ascorbic acid. Electrochem Commun 10:527–530

    Article  CAS  Google Scholar 

  31. Ragupathy D, Gopalan AI, Lee KP (2009) Layer-by-layer electrochemical assembly of poly (diphenylamine)/phosphotungstic acid as ascorbic acid sensor. Microchim Acta 166:303–310

    Article  CAS  Google Scholar 

  32. Wu JP, Yin F (2013) Studies on the electrocatalytic oxidation of dopamine at phosphotungstic acid-ZnO spun fiber-modified electrode. Sensors Actuators B Chem 185:651–657

    Article  CAS  Google Scholar 

  33. Sun LS, Ca DV, Cox JA (2005) Electrocatalysis of the hydrogen evolution reaction by nanocomposites of poly(amidoamine)-encapsulated platinum nanoparticles and phosphotungstic acid. J Solid State Electrochem 9:816–822

    Article  CAS  Google Scholar 

  34. Antonucci PL, Arico AS, Modica E, Antonucci V (1999) Electro-oxidation of CO on Pd black in phosphotungstic acid. J Solid State Electrochem 3:205–209

    Article  CAS  Google Scholar 

  35. Yang YJ, Li WK (2014) CTAB functionalized grapheme oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioelectron 56:300–306

    Article  CAS  Google Scholar 

  36. Yin ZZ, Li L, Zhou SM, Cao H, Ren SB, Chen GZ (2015) Novel cetyltrimethylammonium bromide-functionalized bucky gel nanocomposite for enhancing the electrochemistry of haemoglobin. J Solid State Electrochem 19:1551–1557

    Article  CAS  Google Scholar 

  37. Cai XS, Zhang QL, Wang SJ, Peng J, Zhang YW, Ma HL, Li JQ, Zhai ML (2014) Surfactant-assisted synthesis of reduced graphene oxide/polyaniline composites by gamma irradiation for supercapacitors. J Mater Sci 49:5667–5675

    Article  CAS  Google Scholar 

  38. Zhang K, Mao L, Zhang LL, Chan HSO, Zhao XS, Wu JS (2011) Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 21:7302–7307

    Article  CAS  Google Scholar 

  39. Das K, Maiti S, Ghosh M, Mandal D, Das PK (2013) Graphene oxide in cetyltrimethylammonium bromide (CTAB) reverse micelle: a befitting soft nanocomposite for improving efficiency of surface-active enzymes. J Colloid Interface Sci 395:111–118

    Article  CAS  Google Scholar 

  40. Yang YJ (2015) One-pot synthesis of reduced graphene oxide/zinc sulfide nanocomposite at room temperature for simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 221:750–759

    Article  CAS  Google Scholar 

  41. Meng W, Gall E, Ke FY, Zeng ZH, Kopchick B, Timsina R, Qiu XY (2015) Structure and interaction of graphene oxide-cetyltrimethylammonium bromide complexation. J Phys Chem C 119:21135–21140

    Article  CAS  Google Scholar 

  42. Li WK, Yang YJ (2014) The reduction of graphene oxide by elemental copper and its application in the fabrication of grapheme supercapacitor. J Solid State Electrochem 18:1621–1626

    Article  CAS  Google Scholar 

  43. Hou Y, Ma JC, Wang T, Fu Q (2015) Phosphotungstic acid supported on magnetic core-shell nanoparticles with high photocatalytic activity. Mater Sci Semicond Process 39:229–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y.J., Yu, X. Cetyltrimethylammonium bromide assisted self-assembly of phosphotungstic acid on graphene oxide nanosheets for selective determination of tryptophan. J Solid State Electrochem 20, 1697–1704 (2016). https://doi.org/10.1007/s10008-016-3178-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3178-7

Keywords

Navigation