Skip to main content
Log in

Selective phosphate sensing using copper monoamino-phthalocyanine functionalized acrylate polymer-based solid-state electrode for FIA of environmental waters

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel solid-state selective sensor for mono-hydrogen phosphate (HPO4)−2 based on copper monoamino phthalocyanine (CuMAPc) ionophore covalently attached to poly (n-butyl acrylate) (PnBA) has been developed and potentiometrically evaluated. The all solid-state sensor was constructed by the application of a thin film of a polymer cocktail containing a CuMAPc–PBDA ionophore and benzyl-dimethylhexadecyl ammonium chloride (BDMHAC) as a lipophilic cationic additive onto a gold electrode pre-coated with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) as an ion and electron transducer. The sensor with 14.31 % of CuMAPc-PnBA (ionophore II) exhibited a good selectivity for (HPO4)−2. The thus constructed sensor discriminated many anions, including F, Cl, Br, I, CH3COO, NO3 , ClO4 , and SO4 2−. The potentiometric response of the phosphate selective electrode was found to be independent of the pH of sample solution in the range 6–9. The sensor showed a Nernstian slope of −29.8 ± 0.3 mV conc.−1 decade−1 with linear range of 4.0 × 10−9–1.0 × 10−2 mol L−1 and detection limit of 1.0 × 10−9 mol L−1 at pH 8.0. The proposed phosphate sensor has been utilized as a detector for the flow injection potentiometric determination of phosphate in different water samples at the nanomolar concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adams RLP, Knowler JT, Leader DP (1992) The biochemistry of the nucleic acids. Chapman & Hall Ltd., London

    Book  Google Scholar 

  2. Saenger W (1998) Principles of nucleic acid structure. Springer, New York

    Google Scholar 

  3. Zou Z, Han J, Jang A, Bishop PL, Ahn CH (2007) Biosens Bioelectron 22:1902–1907

    Article  CAS  Google Scholar 

  4. Liang R, Liu M, Wu L (2007) React. Funct Polym 67:769–779

    Article  CAS  Google Scholar 

  5. Gilbert L, Jenkins ATA, Browning S, Hart JP (2011) Sensors Actuators B Chem 160:1322–1327

    Article  CAS  Google Scholar 

  6. Warwick C, Guerreiro A, Soares A (2013) Biosens Bioelectron 41:1–11

    Article  CAS  Google Scholar 

  7. Kawasaki H, Sato K, Ogawa J, Hasegawa Y, Yuki H (1989) Anal Biochem 182:366–370

    Article  CAS  Google Scholar 

  8. Haberer JL, Brandes JA (2003) Mar Chem 82:185–196

    Article  CAS  Google Scholar 

  9. Abbas MN (2003) Anal Lett 36:1231–1244

    Article  CAS  Google Scholar 

  10. Abbas MN (2003) Anal Sci 19:1303–1308

    Article  CAS  Google Scholar 

  11. Ganjali MR, Hosseini M, Memari Z, Faridbodc F, Norouzi P, Goldooz H, Badiei A (2011) Anal Chim Acta 708:107–110

    Article  CAS  Google Scholar 

  12. Estela JM, Cerda V (2005) Talanta 66:307–331

    Article  CAS  Google Scholar 

  13. al Law AT, Adeloju SB (2013) Talanta 114:191–203

    Article  Google Scholar 

  14. Engblom SO (2003) Mar Chem 82:185–196

    Article  Google Scholar 

  15. Norouzi P, Ganjali MR, Faridbod F, Shahtaheri SJ, ZamaniInt HA (2012) Electrochem Sci 7:2633–2642

    CAS  Google Scholar 

  16. Abbas MN, Amer HS (2013) Bull. Korean Chem Soc 34:1153–1159

    Article  CAS  Google Scholar 

  17. Liu W, Li SM, Wu Y (2007) Sensors Actuators 126:609–615

    Article  CAS  Google Scholar 

  18. Le Goff T, Braven J, Ebdon L, Scholefield D (2004) Anal Chim Acta 510:175–182

    Article  Google Scholar 

  19. Liu D, Chen WC, Yang RH, Shen GL, Yu RQ (1997) Anal Chim Acta 338:209

    Article  CAS  Google Scholar 

  20. Fibbioli M, Berger M, Schmidtchen FP (2000) Pretsch. Anal Chem 72:156–160

    Article  CAS  Google Scholar 

  21. Wroblewski W, Wojciechowski K, Dybko A, Brzozka Z, Egberink RJM, Snellink-Ruel BHM, Reinhoudt DN (2001) Anal Chim Acta 432:79–88

    Article  CAS  Google Scholar 

  22. Jain AK, Gupta VK, Raisoni JR (2006) Talanta 69:1007–1012

    Article  CAS  Google Scholar 

  23. Liu JH, Masuda Y, Sekido E (1990) Electroanal Chem 291:67–79

    Article  CAS  Google Scholar 

  24. Sato SN, Fukuda Y (1992) Chem Lett 3:399–402

    Article  Google Scholar 

  25. Claessens CG, Hahn U, Torres T (2008) Chem Rec 8:75

    Article  CAS  Google Scholar 

  26. Snow AW, Barger WR (1989) Phthalocyanine Films in Chemical Sensors. In: Lever ABP (ed) Phthalocyanines Properties and Applications, vol 1. John Wiley and Sons, New York, p. 341

    Google Scholar 

  27. Shahrokhian S (2001) Anal Chem 73:5972–5978

    Article  CAS  Google Scholar 

  28. Nooredeen NM, Abd El- Ghaffar MA, Darwish WM, Elshereafy E, Radwan AA, Abbas MN (2015) J Solid State Electrochem 19:2141–2154

    Article  CAS  Google Scholar 

  29. Daunert S, Bachas LG (1990) Anal Chem 62:1428–1431

    Article  CAS  Google Scholar 

  30. Liua Y, ue Y, Tang H, Wang M, Qin Y (2012) Sensors Actuators 171:556–562

    Article  Google Scholar 

  31. Chen J, Chen N, Huang J, Wang J, Huang M (2006) Inorg Chem Commun 9:313–315

    Article  CAS  Google Scholar 

  32. Achar BN, Fohlen GM, Parker JA, Keshavayya J (1987) Polyhedron 6:1463–1467

    Article  CAS  Google Scholar 

  33. Ngeontae W, Xu C, Ye N, Wygladacz K, Aeungmaitrepirom W, Tuntulani T, Bakker E (2007) Anal Chim Acta 599:124–133

    Article  CAS  Google Scholar 

  34. Abbas MN, Radwan AA (2008) Talanta 74:1113–1121

    Article  CAS  Google Scholar 

  35. Fibbioli M, Moft WE, Badertscher M, De Rooji N, Pretsch E (2000) Electroanalysis 12:1286–1292

    Article  CAS  Google Scholar 

  36. Umezawa Y (2008) CRC handbook of ion-selective electrodes. CRC Press, Boca Raton, FL

    Google Scholar 

  37. Bailey PL (1996) Analysis with ion-selective electrodes. Heyden, London

    Google Scholar 

  38. Guibault GG, Durst RA, Frant MS, Freiser H, Hansen EH, Light TS, Pungor E, Rechnitz G, Rice NM, Rohm TJ, Simon W, Thomas JDR (1976) Pure Appl Chem 48(1976):127

    Google Scholar 

  39. Umezawa Y, Buhlmann P, Umezawa K, Tohada K, Amemiya S (2000) Part 1Inorganic cations. Pure Appl Chem 72:1851–2082

    Article  CAS  Google Scholar 

  40. Hofmeister F, Arch EP (1888) Pathol Pharmacol 24:247

    Article  Google Scholar 

  41. Kim J, Hummel JW, Sudduth KA, Birrell SJ (2007) Trans ASABE 50:415–425

    Article  CAS  Google Scholar 

  42. Ammann D (1986) Ion-selective microelectrodes: principles, design and application. Springer-Verlag, Berlin

    Book  Google Scholar 

  43. Liu D, Chen WC, Yang RH, Shen GL, Yu RQ (1997) Anal. Chim Acta 338:209–214

    Article  CAS  Google Scholar 

  44. Nishizawa SB, Bühlmann P, Xiao KB, Umezawa Y (1998) Anal Chim Acta 35:358

    Google Scholar 

  45. Bakker E, Pretsch E (2005) Trends. Anal Chem 24(199–207):27

    Google Scholar 

  46. Veder J, De Marco R, Clarke G, Chester R, Nelson A, Prince K, Pretsch E, Bakker E (2008) Anal Chem 80:6731

    Article  CAS  Google Scholar 

  47. Lindner E, Gyurcsányi RE (2009) J Solid State Electrochem 13:51–68

    Article  CAS  Google Scholar 

  48. Steinle E, Amemiya S, Bühlmann P, Meyerhoff M (2000) Anal Chem 72:5766–5773

    Article  CAS  Google Scholar 

  49. Krzywieckir M, Grzadziel L, Ottaviano L, Parisse P, Santucci S, Szuber J (2008) Mater Sci Pol 26:287–294

    Google Scholar 

  50. Sokolova TN, Lomova TN, Klueva ME, Suslova EE, Mayzlish VE, Shaposhnikov GP (2000) Molecules 5:775–785

    Article  CAS  Google Scholar 

  51. De Wael K, Westbroek P, Bultinck P, Depla D, Vandenabeele P, Adriaens A, Temmerman E (2005) Electrochem Commun 7:87–96

    Article  Google Scholar 

  52. Xu WJ, Chai Y, Yuan R, Liu S (2006) Anal Bioanal Chem 385:926–930

    Article  CAS  Google Scholar 

  53. Ren J, Watanabe H, Yamamura S, Nakamura T (2004) Anal Chim Acta 525:105–110

    Article  CAS  Google Scholar 

  54. Acton QA (2012) Ions-advances in research and applications. Scholarly edition, Atlanta

    Google Scholar 

  55. Singh A, Singh J, Singh N, Jang DO (2015) Tetrahedron 71:6143–6147

    Article  CAS  Google Scholar 

  56. Fraga ARL, Quintana JC, Destri GL, Giamblanco N, Toro RG, Punzo F (2012) J Solid State Electrochem 16:901–909

    Article  Google Scholar 

  57. Michalska A, Skompska M, Mieczkowski J, Zagrska M, Maksymiuk K (2006) Electroanalysis 18:763

    Article  CAS  Google Scholar 

  58. Michalska A, Maksymiuk K (2005) J Electroanal Chem 576:339

    Article  CAS  Google Scholar 

  59. Ceresa A, Sokalski T, Pretsch E (2001) J Electroanal Chem 50:170

    Google Scholar 

  60. Yu S, Yuan Q, Li F, Liu Y (2012) Talanta 101:546–549

    Article  CAS  Google Scholar 

  61. Yim H, Kibbey CE, Ma S, Kliza DM, Liu D, Park S, Torre CE, Meyerhoff ME (1993) Biosens Bioelectron 8:l–38

    Article  Google Scholar 

  62. Tonelli D, Ghorbel S, Colombari M, Guadagnini L, Ghorbel A (2013) J Electro Anal Chem 690:25–31

    Article  CAS  Google Scholar 

  63. Kumar P, Min Kim D, Ho Hyun M, Shim Y (2010) Talanta 82:1107–1112

    Article  CAS  Google Scholar 

  64. Chandra S, Raizada S, Sharma S (2012) J Chem Pharm Res 4:3769–3777

    CAS  Google Scholar 

  65. Ganjali MR, Norouzi P, Ghomi M, Salavati-Niasari M (2006) Anal Chim Acta 567:196–201

    Article  CAS  Google Scholar 

  66. Gupta VK, Ludwig R, Agarwal S (2005) Anal Chim Acta 538:213–218

    Article  CAS  Google Scholar 

  67. Modi NR, Patel B, Patel MB, Menon SK (2011) Talanta 86:121–127

    Article  CAS  Google Scholar 

  68. Murphy J, Riley JP (1962) Anal Chim Acta 27:31

    Article  CAS  Google Scholar 

  69. Ali EM, Shabaan-Dessouki SA, Soliman AI, Shenawy AS (2014) Int J Pure App Biosci 2:35–53

    Google Scholar 

Download references

Acknowledgments

The authors thank the EU for supporting this work through FP7 Marie Curie IRSES Project: Micro/nanosensors for early cancer warning system—diagnostic and prognostic information “SMARTCANCERSENS” and NATO for supporting this work through project entitled: Novel Electrochemical Nano-Sensors for Toxic Ions Detection Project number: CBP.NUKR.SFP 984173 for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Nooredeen Abbas.

Electronic supplementary materials

ESM. 1

(DOCX 26 kb)

ESM. 2

(DOCX 27 kb)

ESM. 3

(DOCX 20 kb)

ESM. 4

(DOCX 26 kb)

ESM. 5

(DOCX 21 kb)

ESM. 6

(DOCX 24 kb)

ESM. 7

(DOCX 25 kb)

ESM. 8

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, M.N., Radwan, A.L.A., Nooredeen, N.M. et al. Selective phosphate sensing using copper monoamino-phthalocyanine functionalized acrylate polymer-based solid-state electrode for FIA of environmental waters. J Solid State Electrochem 20, 1599–1612 (2016). https://doi.org/10.1007/s10008-016-3165-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3165-z

Keywords

Navigation