Skip to main content
Log in

Use of 5,10,15,20-tetrakis(p-chlorophenyl)porphyrin as sensor material: potentiometric determination of aluminium(III) ions

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, 5,10,15,20-tetrakis(p-chlorophenyl)porphyrin has been synthesized and used as an ionophore for the preparation of a poly(vinyl chloride) (PVC) membrane sensor for aluminium(III) ions. The optimum composition of the best performing membrane contained ionophore, bis(2-ethylhexyl) adipate, PVC and potassium tetrakis(p-chlorophenyl) borate in the ratio of 4.0:63.0:32.0:1.0 (mg). The prepared PVC membrane morphology has been analysed by scanning electron microscopy. The developed aluminium(III)-selective sensor works in a wide linear concentration range of 1.0 × 10–5 to 1.0 × 10–1 mol l–1 and, the detection limit of this sensor is 2.81 × 10−6 mol l–1. The sensor displays near-Nernstian slope of 25.0 ± 2.7 mV per decade for Al3+ ions. The aluminium(III)-selective sensor has a wide working pH range of 5.0–10.0. The sensor shows good reusability, long-term stability and a fast response time of less than 5 s. In addition, the sensor shows good selectivity for Al3+ ions over different cations. This aluminium(III)-selective sensor was successfully used as an indicator electrode in the potentiometric titration of Al3+ ions with EDTA. The developed sensor was successfully applied to the direct determination of Al3+ in different water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Ma Y-H, Yuan R, Chai Y-Q and Liu X-L 2010 Mater. Sci. Eng. C 30 209

    Article  CAS  Google Scholar 

  2. Ahmed M J, Hoque M R, Khan A S M and Bhattacharjee S C 2010 Eurasian. J. Anal. Chem. 5 1

    Google Scholar 

  3. Silvestre A L P, Milani M I, Rossini E L, Pezza L and Pezza R P 2018 Spectrochim. Acta A Mol. Biomol. Spectrosc. 204 432

    Article  CAS  Google Scholar 

  4. Arvand M and Asadollahzadeh S A 2008 Talanta 75 1046

    Article  CAS  Google Scholar 

  5. Gürdere M B, Özbek O and Ceylan M 2016 Synt. Comm. 46 322

    Article  Google Scholar 

  6. Bera R T, Sahoo S K, Mittal S K and Ashok Kumar S K 2010 Int. J. Electrochem. Sci. 5 29

    CAS  Google Scholar 

  7. Kumar R S and Ashok Kumar S K 2019 Inorg. Chem. Commun. 106 165

    Article  Google Scholar 

  8. Flaten T P 2001 Brain Res. 55 187

    Article  CAS  Google Scholar 

  9. Yari A, Darvishi L and Shamsipur M 2006 Anal. Chim. Acta 555 329

    Article  CAS  Google Scholar 

  10. Harigaya K, Kuwahar Y and Nishi H 2008 Chem. Pharm. Bull. 56 475

    Article  CAS  Google Scholar 

  11. Frankowski M, Zioła-Frankowska A, Kurzyca I, Novotný K, Vaculoviˇc T, Kanický, et al 2011 Environ. Monit. Assess. 182 71

    Article  CAS  Google Scholar 

  12. Krishnan S S, Gillespie K A and Crapper D R 1972 Anal. Chem. 44 1469

    Article  CAS  Google Scholar 

  13. Bradley C and Leung F Y 1994 Clin. Chem. 40 431

    Article  CAS  Google Scholar 

  14. Zanjanchi M A, Noei H and Moghimi M 2006 Talanta 70 933

    Article  CAS  Google Scholar 

  15. Zuziak J, Reczyński W, Baś B and Jakubowska M 2018 Anal. Biochem. 558 69

    Article  CAS  Google Scholar 

  16. Işıldak Ö, Deligönül N and Özbek O 2019 Turk. J. Chem. 43 1149

    Article  Google Scholar 

  17. Isildak Ö, Özbek O and Gürdere M B 2020 J. Anal. Test. 4 273

    Article  Google Scholar 

  18. Isildak Ö, Özbek O and Yigit K M 2020 Bulg. Chem. Commun. 52 448

    Google Scholar 

  19. Özbek O, Isildak Ö and Isildak I 2021 Biochem. Eng. J. 176 108181

    Article  Google Scholar 

  20. Isildak O and Özbek O 2021 Crit. Rev. Anal. Chem. 51 218

    Article  CAS  Google Scholar 

  21. Özbek O, Isildak Ö, Gürdere M B and Cetin A 2021 Org. Commun. 14 228

    Article  Google Scholar 

  22. Temelli B and Unaleroglu C 2009 Tetrahedron 65 2043

    Article  CAS  Google Scholar 

  23. Zhao L, Zhao Y, Li R, Wu D, Xu R, Li S et al 2020 Chemosphere 238 24552

    Google Scholar 

  24. Huang D, Li X, Chen M, Chen F, Wan Z, Rui R et al 2019 J. Electroanal. Chem. 841 101

    Article  CAS  Google Scholar 

  25. Özbek O, Isildak Ö and Berkel C 2020 J. Incl. Phenom. Macrocycl. Chem. 98 1

    Article  Google Scholar 

  26. Isildak O and Özbek O 2020 J. Chem. Sci. 132 29

    Article  CAS  Google Scholar 

  27. Adler A D, Longo F R, Finarelli J D, Goldmacher J, Assour J and Korsakoff L 1967 J. Org. Chem. 32 476

    Article  CAS  Google Scholar 

  28. Liu F, Duan L, Wang Y-L, Zhang Q and Wang J-Y 2009 Synt. Comm. 39 3990

    Article  CAS  Google Scholar 

  29. Isildak O, Özbek O and Yigit K M 2021 Int. J. Environ. Anal. Chem. 101 2035

    Article  CAS  Google Scholar 

  30. Topcu C 2016 Talanta 161 623

    Article  CAS  Google Scholar 

  31. Buck R P and Lindner E 1994 Pure Appl. Chem. 66 2527

    Article  CAS  Google Scholar 

  32. Özbek O and Isildak Ö 2021 Int. J. Environ. Anal. Chem. https://doi.org/10.1080/03067319.2021.1877283

  33. Umezawa Y, Bühlmann P, Umezawa K, Tohda K and Amemiya A S 2000 Pure Appl. Chem. 72 1851

    Article  CAS  Google Scholar 

  34. Gupta V K, Jain A K, Singh L P and Khurana U 1997 Anal. Chim. Acta 355 33

    Article  CAS  Google Scholar 

  35. Gupta V K, Jain A K and Kumar P 2006 Electrochim. Acta 52 736

    Article  CAS  Google Scholar 

  36. Mousavi M F, Arvand-Barmchi M and Zanjanchi M A 2001 Electroanal. 13 1125

    Article  CAS  Google Scholar 

  37. Abbaspour A, Esmaeilbeig A R, Jarrahpour A A, Khajeh B and Kia R 2002 Talanta 58 397

    Article  CAS  Google Scholar 

  38. Saleh M B, Hassan S S M, Abdel Gaber A A and Abdel Kream N A 2001 Anal. Chim. Acta 434 247

    Article  CAS  Google Scholar 

  39. Soleimani M and Afshar M G 2014 Russ. J. Electrochem. 50 554

    Article  CAS  Google Scholar 

  40. Özbek O and Isildak Ö 2022 ChemistrySelect 7 e202103988

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Tokat Gaziosmanpasa University Scientific Research Projects Commission (Project Number 2019/43) for the financial support. In addition, we would like to thank Research Assistant Caglar Berkel and M.Sc. student Alper Cetin for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguz Özbek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özbek, O., Isildak, Ö. Use of 5,10,15,20-tetrakis(p-chlorophenyl)porphyrin as sensor material: potentiometric determination of aluminium(III) ions. Bull Mater Sci 45, 114 (2022). https://doi.org/10.1007/s12034-022-02696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02696-3

Keywords

Navigation