Skip to main content
Log in

Ellipsometric and mechanical characterization of nanostructured anodic oxide film formed on Ti-6Al-7Nb alloy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we grow TiO2 nanotube layers by using the single-step direct anodization of Ti-6Al-7Nb alloy in aqueous electrolytes containing F ions. Nanotube layers are characterized by spectroscopic ellipsometry (SE) and field-emission gun scanning electron microscopy (FEG-SEM). We also use SE to monitor the anodization process for TiO2 nanotube layers on biocompatible Ti-6Al-7Nb alloy. In addition, we study mechanical properties by nanoindentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stępień M, Handzlik P, Fitzner K (2014) Synthesis of ZrO2 nanotubes in inorganic and organic electrolytes by anodic oxidation of zirconium. J Solid State Electrochem 18:3081–3090

    Article  Google Scholar 

  2. Fang D, Yu J, Luo Z, Liu S, Huang K, Xu W (2012) Fabrication parameter-dependent morphologies of self-organized ZrO2 nanotubes during anodization. J Solid State Electrochem 16:1219–1228

    Article  CAS  Google Scholar 

  3. Hahn R, Berger S, Schmuki P (2010) Bright visible luminescence of self-organized ZrO2 nanotubes. J Solid State Electrochem 14:285–288

    Article  CAS  Google Scholar 

  4. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int 50:2904–2939

    Article  CAS  Google Scholar 

  5. Nguyen TT, Park I-S, Lee MH, Bae TS (2013) Enhanced biocompatibility of a pre-calcified nanotubular TiO2 layer on Ti–6Al–7Nb alloy. Surf Coat Tech 236:127–134

    Article  CAS  Google Scholar 

  6. Almeida LC, Zanoni MVB (2014) Decoration of Ti/TiO2 nanotubes with Pt nanoparticles for enhanced UV-Vis light absorption in photoelectrocatalytic process. J Braz Chem Soc 25:579–588

    CAS  Google Scholar 

  7. Macak JM, Tsuchiya H, Luciano TL, Ghicov A, Schmuki P (2005) Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4 V formed by anodization in NH4F solutions. Inc J Biomed Mater Res 75A:928–933

    Article  CAS  Google Scholar 

  8. Rafieerad AR, Zalnezhada E, Bushroa AR, Hamouda AMS, Sarraf M, Nasiri-Tabrizi B (2015) Self-organized TiO2 nanotube layer on Ti–6Al–7Nb for biomedical application. Surf Coat Tech 265:24–31

    Article  CAS  Google Scholar 

  9. Joo S, Muto I, Hara N (2008) In situ ellipsometric analysis of growth processes of anodic TiO2 nanotube films. J Electrochem Soc 155:C154–C161

    Article  CAS  Google Scholar 

  10. Cáceres D, Munuera C, Ocal C, Jiménez JA, Gutiérrez A, López MF (2008) Nanomechanical properties of surface-modified titanium alloys for biomedical applications. Acta Biomater 4:1545–1552

    Article  Google Scholar 

  11. Fujiwara H (2007) Spectroscopic ellipsometry principles and applications. John Wiley & Sos Ltd, England

    Book  Google Scholar 

  12. Irena LJ, Arsova IL, Prusi AR, Arsov LD (2003) Ellipsometric study of anodic oxide films formed on niobium surfaces. J Solid State Electrochem 7:217–222

    Article  Google Scholar 

  13. Crawford GA, Chawla N, Das K, Bose S, Bandyopadhyay A (2007) Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater 3:359–367

    Article  CAS  Google Scholar 

  14. Ibarra YS, Gaitero JJ, Erkizia E, Campiilo I (2006) Atomic force microscopy nanoidentation of cement pastes with nanotubes dispersions. Phys Stat Sol 203:1076–1081

    Article  Google Scholar 

  15. Campanelli LC, Duarte LT, da Silva PSCP, Bolfarini C (2014) Fatigue behavior of modified surface of Ti–6Al–7Nb and CP-Ti by micro-arc oxidation. Mater Design 64:393–399

    Article  CAS  Google Scholar 

  16. Duarte LT, Bolfarini C, Biaggio SR, Rocha-Filho RC, Nascente PAP (2014) Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4 V and Ti-6Al-7Nb by micro-arc oxidation. Mater Sci Eng C 41:343–348

    Article  CAS  Google Scholar 

  17. Raja KS, Misra M, Paramguru K (2005) Formation of self-ordered Nano-tubular structure of anodic oxide layer on titanium. Electrochim Acta 51:154–165

    Article  CAS  Google Scholar 

  18. Laet J, Terryn H, Vereecken J (1998) Development of an optical model for steady state porous anodic films on aluminum formed in phosphoric acid. Thin Solid Films 320:241–252

    Article  Google Scholar 

  19. Hebert KR, Albu SP, Paramasivam I, Schmuki P (2012) Morphological instability leading to formation of porous anodic oxide films. Nat Mater 11:162–166

    Article  CAS  Google Scholar 

  20. Advanced shape analysis with ImageJ (2008) Proceedings of the Second ImageJ User and Developer Conference, Luxembourg. http://www.mecourse.com/landinig/software/software.html Accessed 06 Jan 2015

  21. ImageJ, Image processing and Analysis in Java (2004) National Institutes of Health, United States. http://imagej.nih.gov/ij/index.html Accessed 06 Jan 2015

Download references

Acknowledgments

The authors thank the funding agencies FINEP, CNPq, PROPPI/UFF, and FAPERJ (Process E-26/111.368/2014) for financial support, and PhD Erika Batista Silveira and INT for technical assistance during the electron microscopy analyzes. The authors are in debt with Urszula Mieńkowska Veríssimo and Marcos Veríssimo Alves for the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elivelton Alves Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guedes, L.F.N., Dalboni Garcia, M.T., Cunha, J.N. et al. Ellipsometric and mechanical characterization of nanostructured anodic oxide film formed on Ti-6Al-7Nb alloy. J Solid State Electrochem 20, 2517–2523 (2016). https://doi.org/10.1007/s10008-016-3140-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3140-8

Keywords

Navigation