Skip to main content
Log in

Fabrication parameter-dependent morphologies of self-organized ZrO2 nanotubes during anodization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Zirconia (ZrO2) nanotubes have been synthesized using a facile anodizing process in organic electrolyte systems containing a low content of fluoride. The nanotube architecture evolution was recorded at different anodization periods (1–24 h) by scanning electron microscopy. A compact layer was found between the Zr substrate and its upper tubular layer after 1 h of anodization, whereas after further anodization for 3 h the compact layer disappeared. Meanwhile, ZrO2 nanotubes turned to a uniform structure from top to bottom. However, after 18–24-h-long anodization, the uniform tubular layer was replaced by a random layer composed of various structural defects. Since the compact layer was not completely dissolved, the retained compact layer yielded O-rings with double walls on the outer surface of the nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weber J, Singhal R, Zekri S, Kumar A (2008) Intern Mater Rev 53:235–255

    Article  CAS  Google Scholar 

  2. Fang D, Huang KL, Liu SQ, Qin DY (2009) Electrochem Commun 11:901–904

    Article  CAS  Google Scholar 

  3. Allam NK, Feng XJ, Grimes CA (2008) Chem Mater 20:6477–6481

    Article  CAS  Google Scholar 

  4. Karlinsey RL (2005) Electrochem Commun 7:1190–1194

    Article  CAS  Google Scholar 

  5. Tsuchiya H, Macak JM, Sieber I, Schmuki P (2005) Small 1:722–725

    Google Scholar 

  6. Mukherjee N, Paulose M, Varghese OK, Mor GK, Grimes CA (2003) J Mater Res 18:2296–2299

    Article  CAS  Google Scholar 

  7. Ghicov A, Schmuki P (2009) Chem Commun 20:2791–2808

    Article  Google Scholar 

  8. Berger S, Jakubka F, Schmuki P (2009) Electrochem Solid State Lett 12:K45–K48

    Article  CAS  Google Scholar 

  9. Bao J, Tie C, Xu Z, Ma Q, Hong J, Sang H, Sheng D (2002) Adv Mater 14:44–47

    Article  CAS  Google Scholar 

  10. Shin HJ, Jeong DK, Lee JG, Sung MM, Kim JY (2004) Adv Mater 16:1197–1200

    Article  CAS  Google Scholar 

  11. Cao W, Tan OK, Zhu W, Jiang B, Gopal RCV (2001) Sensor Actuat B Chem 77:421–426

    Article  Google Scholar 

  12. Cho HJ, Choi GM (2008) J Power Sources 176:96–101

    Article  CAS  Google Scholar 

  13. Tsai PC, Lee JH, Chang CL (2007) Surf Coat Technol 202:719–724

    Article  CAS  Google Scholar 

  14. Fogaing EY, Huger M, Gault C (2007) J Eur Ceram Soc 27:1843–1848

    Article  Google Scholar 

  15. Jin G, Lu G, Guo Y, Guo Y, Wang J, Kong W, Liu X (2005) J Mol Catal A: Chem 232:165–172

    Article  CAS  Google Scholar 

  16. Tsuchiya H, Schmuki P (2004) Electrochem Commun 6:1131–1134

    Article  CAS  Google Scholar 

  17. Fang D, Huang KL, Luo ZP, Wang Y, Liu SQ, Zhang QG (2011) J Mater Chem 21:4989–4994

    Article  CAS  Google Scholar 

  18. Zhao JL, Wang XX, Xu RQ, Meng FB, Guo LM, Li YX (2008) Mater Lett 62:4428–4430

    Article  CAS  Google Scholar 

  19. Shin Y, Lee S (2009) Nanotechnology 20:105301–105305

    Article  Google Scholar 

  20. Guo L, Zhao J, Wang X, Xu R, Li Y (2009) J Solid State Electrochem 13:1321–1326

    Article  CAS  Google Scholar 

  21. Tsuchiya H, Macak JM, Taveira L, Schmuki P (2005) Chem Phys Lett 410:188–191

    Article  CAS  Google Scholar 

  22. Tsuchiya H, Macak JM, Ghicov A, Taveira L, Schmuki P (2005) Corros Sci 47:3324–3335

    Article  CAS  Google Scholar 

  23. Vacandio F, Eyraud M, Chassigneux C, Knauth P, Djenizian T (2010) J Electrochem Soc 157:K279–K283

    Article  CAS  Google Scholar 

  24. Muratore F, Wiecheć AB, Hashimoto T, Skeldon P, Thompson GE (2010) Electrochem Commun 12:1727–1730

    Article  CAS  Google Scholar 

  25. Lockman Z, Sreekantan S, Ismail S, Schmidt-Mende L, MacManus-Driscoll JL (2010) J Alloy Compd 503:359–364

    Article  CAS  Google Scholar 

  26. Pouporte T, Finne J (2006) J App Electrochem 36:33–41

    Article  Google Scholar 

  27. Khalil N, Leach JS (1996) J App Electrochem 26:231–233

    Article  CAS  Google Scholar 

  28. Ismail S, Ahmad ZA, Berenov A, Lockman Z (2011) Corr Sci 53:1156–1164

    Article  CAS  Google Scholar 

  29. O'Sullivan JP, Wood GC (1970) Proc Roy Soc Lond A 317:511–543

    Article  Google Scholar 

  30. Shimizu K, Kobayashi K, Thompson GE, Skeldon P, Wood GC (1997) J Electrochem Soc 144:418–423

    Article  CAS  Google Scholar 

  31. Habazaki H, Fushimi K, Shimizu K, Skeldon P, Thompson GE (2007) Electrochem Commun 9:1222–1227

    Article  CAS  Google Scholar 

  32. Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, Macak JM, Schmuki P (2008) Adv Mater 20:4135–4139

    CAS  Google Scholar 

  33. Berger S, Kunze J, Schmuki P, Valota AT, LeClere DJ, Skeldon P, Thompson GE (2010) J Electrochem Soc 157:C18–C23

    Article  CAS  Google Scholar 

  34. Mahesh RA, Jayaganthan R, Prakash S (2009) J Alloys Comp 468:392–405

    Article  CAS  Google Scholar 

  35. Stefanov P, Stoychev D, Valov I, Kakanakova-Georgieva A, Marinova T (2000) Mater Chem Phys 65:222–225

    Article  CAS  Google Scholar 

  36. Suzuki S, Yanagihara K, Hirokawa K (2000) Surf Interface Anal 30:372–376

    Article  CAS  Google Scholar 

  37. Cho BO, Lao S, Sha L, Chang JP (2001) J Vac Sci Technol A 19:2751–2761

    Article  CAS  Google Scholar 

  38. Ardelean H, Frateur I, Zanna S, Atrens A, Marcus P (2009) Corr Sci 51:3030–3038

    Article  CAS  Google Scholar 

  39. Ebert H, Knecht M, Muhler M, Helmer O, Bensch W (1995) J Phys Chem 99:3326–3330

    Article  Google Scholar 

  40. Steiner SA, Baumann TF, Bayer BC, Blume R, Worsley MA, MoberlyChan WJ, Shaw EL, Schlogl R, Hart AJ, Hofmann S, Wardle BL (2009) J Am Chem Soc 131:12144–12154

    Article  CAS  Google Scholar 

  41. Balaceanu M, Braic M, Braic V, Vladescu A, Negrilaa CC (2005) J Optoelectron Adv Mater 7:2557–2560

    CAS  Google Scholar 

  42. Won YS, Kim YS, Varanasi VG, Kryliouk O, Anderson TJ, Sirimanne CT, McElwee-White L (2007) J Cryst Growth 304:324–332

    Article  CAS  Google Scholar 

  43. Li LJ, Yan DX, Lei JL, He JX, Wu SM, Pan FS (2011) Mater Lett 65:1434–1437

    Article  CAS  Google Scholar 

  44. Cong P, Mori S (2004) Tribol Lett 17:261–267

    Article  CAS  Google Scholar 

  45. Wang LN, Luo JL (2010) Electrochem Commun 12:1559–1562

    Article  CAS  Google Scholar 

  46. Muratore F, Hashimoto T, Skeldon P, Thompson GE (2011) Corr Sci 53:2299–2305

    Article  CAS  Google Scholar 

  47. Muratore F, Baron-Wiechec A, Hashimoto T, Gholinia A, Skeldon P, Thompson GE (2011) Growth of nanotubes on zirconium in glycerol/fluoride electrolytes. Electrochim Acta. doi:10.1016/j.electacta.2010.12.089

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 50772133), Innovation Projects for Graduates of Center South University (No. LA09014), and Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China (No. 1343–7113400102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, D., Yu, J., Luo, Z. et al. Fabrication parameter-dependent morphologies of self-organized ZrO2 nanotubes during anodization. J Solid State Electrochem 16, 1219–1228 (2012). https://doi.org/10.1007/s10008-011-1516-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1516-3

Keywords

Navigation