Skip to main content
Log in

Synthesis, structural, and electrochemical properties of NaCo(PO3)3 cathode for sodium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new Co-base sodium metaphosphate compound, NaCo(PO3)3, has been synthesized here by solid-state method. The crystal structure is refined by the Rietveld method, and the results reveal that NaCo(PO3)3 has an orthorhombic structure with the space group of P2 1 2 1 2 1 and lattice parameters of a = 14.2453(2) Å, b = 14.2306(1) Å, and c = 14.2603(2) Å. Its typical morphology and chemical composition are confirmed by scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The valence states of all elements and the internal/external vibrational modes of NaCoP3O9 compound are measured by X-ray photoelectron and vibrational spectrum, where a typical feature of the (PO3) polyanion group is observed. Meanwhile, the electrochemical properties of NaCo(PO3)3 cathode for sodium-ion batteries are also elevated and an initial discharge capacity of 33.8 mAh/g can be obtained at 0.05 C within 1.5–4.2 V. After 20 cycles, a discharge capacity of 26.7 mAh/g can be obtained and a well-kept oxidation–reduction plateau is still observed for NaCo(PO3)3 cathode, indicating the good reversibility of this metaphosphate electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anolini E (2004) LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 170:159–171

    Article  Google Scholar 

  2. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy & Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  3. Kim S-W, Seo D-H, Ma XH, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  4. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  Google Scholar 

  5. Pan HL, Hu Y-S, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, energy environ. Sci. 6:2338–2360

    CAS  Google Scholar 

  6. Baster D, Maziarz W, Świerczek K, Stokłosa A, Molenda J (2015) Structural and electrochemical properties of Na0.72CoO2 as cathode material for sodium-ion batteries. J Solid State Electrochem. doi:10.1007/s10008-015-2977-6

    Google Scholar 

  7. Senthilkumar B, Sankar KV, Vasylechko L, Lee Y-S, Selvan RK (2014) Synthesis and electrochemical performances of maricite-NaMPO4 (M = Ni, Co, Mn) electrodes for hybrid supercapacitors. RSC Adv 4:53192–53200

    Article  CAS  Google Scholar 

  8. Jian ZL, Zhao L, Pan HL, Hu Y-S, Li H, Chen W, Chen LQ (2012) Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun 14:86–89

    Article  CAS  Google Scholar 

  9. Oh S-M, Myung S-T, Hassoun J, Scrosati B, Sun Y-K (2012) Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem Commun 22:149–152

    Article  CAS  Google Scholar 

  10. Barpanda P, Ye T, Nishimura S, Chung S-C, Yamada Y, Okubo M, Zhou HS, Yamada A (2012) Sodium iron pyrophosphate: a novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochem Commun 24:116–119

    Article  CAS  Google Scholar 

  11. Barpanda P, Lu JC, Ye T, Kajiyama M, Chung SC, Yabuuchi N, Komaba S, Yamada A (2013) A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries. RSC Adv 3:3857–3860

    Article  CAS  Google Scholar 

  12. Borel MM, Goreaud M, Grandin A, Labbe P, Leclair A, Raveau B (1991) Phosphates of mixed valent transition elements. European Jof Solid State and Inorganic Chemistry 23:93–129

    Google Scholar 

  13. Barpanda P, Ye T, Avdeev M, Chung S-C, Yamada A (2013) A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries. J Mater Chem A 1:4194–4197

    Article  CAS  Google Scholar 

  14. Kim H, Park I, Lee S, Kim H, Park KY, Park YU, Kim H, Kim J, Lim HD, Yoon WS, Kang K (2013) Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem Mater 25:3614–3622

    Article  CAS  Google Scholar 

  15. Sanz F, Parada C, Rojo JM, Ruz-Valero C (2001) Synthesis, structural characterization, magnetic properties, and ionic conductivity of Na4MII3(PO4)2(P2O7) (MII ) Mn, Co, Ni). Chem Mater 13:1334–1340

    Article  CAS  Google Scholar 

  16. Murashova EV, Chudinova NN (1997) Crystal structures of polyphosphates NaCd(PO3)3 and NaMn(PO3)3. Crystallogr Rep 42:370–374

    Google Scholar 

  17. Lin XH, Zhao YM, Dong YZ, Kuang Q (2015) Synthesis and structural data of a Fe-base sodium metaphosphate compound, NaFe(PO3)3. Data in Brief 4:217–221

    Article  Google Scholar 

  18. Lin XH, Zhao YM, Dong YZ, Kuang Q, Liang ZY, Yan DL, Liu XD (2015) Synthesis, structural, magnetic and sodium deinsertion/insertion properties of a sodium ferrous metaphosphate, NaFe(PO3)3. Materials Science and Engineering B. 197:58–66

    Article  CAS  Google Scholar 

  19. Boultif A, Louer D (1991) Indexing of powder diffraction patterns for low-​symmetry lattices by the successive dichotomy method. J Appl Crystallogr 24:987–993

    Article  CAS  Google Scholar 

  20. Larson AC, Von Dreele RB (2004) Los Alamos national laboratory report. Laur 86-748

  21. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  22. Kohiki S, Ohmura T, Kusao K (1983) Appraisal of a new charge correction method in X-ray photoelectron spectroscopy. J Electron Spectrosc Relat Phenom 31:85–90

    Article  CAS  Google Scholar 

  23. Swift P (1982) Adventitious carbon-the panacea for energy referencing? Surf Interface Anal 4:47–51

    Article  CAS  Google Scholar 

  24. Mattogno G, Ferragina C, Massucci MA, Patrona P, Ginestra AL (1988) X-ray photoelectron spectroscopic evidence of interlayer complex formation between cobalt(II) and nitrogen-heterocycles in α-zirconium monohydrogenphosphate hydrate (α-Zr(HPO4)2.H2O). J Electron Spectrosc Relat Phenom 46:285–295

    Article  CAS  Google Scholar 

  25. Frost DC, McDowell CA, Woolsey IS (1974) Woolsey X-ray photoelectron spectra of cobalt compounds. Mol Phys 27:1473–1489

    Article  CAS  Google Scholar 

  26. Rajalakshmi A, Nithya VD, Karthikeyan K, Sanjeeviraja C, Lee YS, Selvan RK (2013) Physicochemical properties of V5+ doped LiCoPO4 as cathode materials for Li-ion batteries. J Sol-Gel Sci Technol 65:399–410

    Article  CAS  Google Scholar 

  27. Lin XH, Zhao YM, Kuang Q, Liang ZY, Yan DL, Liu XD, Dong YZ (2014) Synthesis and electrochemical properties of Co-doped Li9V3(P2O7)3(PO4)2/C as cathode materials for lithium-ion batteries. Solid State Ionics 259:46–52

    Article  CAS  Google Scholar 

  28. Tan L, Luo ZM, Liu HW, Yu Y (2010) Synthesis of novel high-voltage cathode material LiCoPO4 via rheological phase method. J Alloys Compd 502:407–410

    Article  CAS  Google Scholar 

  29. Kim KS (1974) Charge transfer transition accompanying X-ray photoionization in transition-metal compounds. J Electron Spectrosc Relat Phenom 3:217–226

    Article  CAS  Google Scholar 

  30. Pereira JSHQ, Frost DC, McDowell CA (1980) X-ray photoelectron spectroscopy of cobalt(II), nickel(II), and copper(II) acetylacetonate vapors. J Chem Phys 72:5151–5159

    Article  Google Scholar 

  31. Okamoto Y, Imanaka T, Teranishi S (1980) Surface structure of cobalt(II) oxide-​molybdena​/alumina catalysts studied by X-ray photoelectron spectroscopy. J Catal 65:448–460

    Article  CAS  Google Scholar 

  32. Barbaux Y, Dekiouk M, Le Maguer D, Gengembre L, Huchette D, Grimblot J (1992) Bulk and surface analysis of an iron-phosphorus-oxygen oxydehydrogenation catalyst. Appl Catalysis A 90:51–60

    Article  CAS  Google Scholar 

  33. Chowdari BVR, Tan KL, Chia WT (1992) Solid State Ionics 53:1172–1178

    Article  Google Scholar 

  34. Asunskis AL, Gaskell KJ, Asunskis DJ, Sherwood PMA (2003) Valence-band x-ray photoelectron spectroscopic studies of different forms of sodium phosphate. J Vacuum Sci Technol, A: Vacuum, Surfaces, and Films 21:1126–1132

    Article  CAS  Google Scholar 

  35. Ramana CV, Salah AA, Utsunomiya S, Morhange J-F, Mauger A, Gendron F, Julien CM (2007) Spectroscopic and chemical imaging analysis of lithium iron triphosphate. J Phys Chem C 111:1049–1054

    Article  CAS  Google Scholar 

  36. Rulmont A, Cahay R, Liegeois-Duyckaerts M, Tarte P (1991) Vibrational spectroscopy of phosphates: some general correlations between structure and spectra. European J Solid State and Inorganic Chem 28:207–219

    CAS  Google Scholar 

  37. Ilieva D, Kovacheva D, Petkov C, Bogachev G (2001) Vibrational spectra of R(PO3)3 metaphosphates (R = Ga,In,Y,Sm,Gd,Dy). J Raman Spectrosc 32:893–899

    Article  CAS  Google Scholar 

  38. Salah AA, Jozwiak P, Garbarczyk J, Benkhouja K, Zaghib K, Gendron F, Julien CMJ (2005) Local structure and redox energies of lithium phosphates with olivine- and nasicon-like structures. J. Power Sources 140:370–375

    Article  CAS  Google Scholar 

  39. Poovizhi P, Selladurai S (2011) Study of pristine and carbon-coated LiCoPO4 olivine material synthesized by modified sol-gel method. Ionics 17:13–19

    Article  CAS  Google Scholar 

  40. Bramnik N, Nikolowski K, Baehtz K, Bramnik C, Ehrenberg H (2007) Phase transitions occurring upon lithium insertion-extraction of LiCoPO4. Chem Mater 19:908–915

    Article  CAS  Google Scholar 

  41. Carver JC, GK S, TA C (1972) Use of X-ray photoelectron spectroscopy to study bonding in chromium, manganese, iron, and cobalt compounds. J Chem Phys 57:973–982

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NSFC Grant supported through NSFC Committee of China (No. 51172077 & 51372089) and the Foundation supported through the Fundamental Research Funds for the Central Universities (No. 2014ZB0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Dong, Y., Kuang, Q. et al. Synthesis, structural, and electrochemical properties of NaCo(PO3)3 cathode for sodium-ion batteries. J Solid State Electrochem 20, 1241–1250 (2016). https://doi.org/10.1007/s10008-015-3114-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3114-2

Keywords

Navigation