Skip to main content
Log in

Separation of the ionic and electronic contributions to the overall thermodynamics of the insertion electrochemistry of some solid Au(I) complexes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Water-insoluble alkynyl-triphosphine tetranuclear Au(I) complexes containing ferrocenyl motifs, [Au4(C2R)2{(PPh2CH)2PPh}2](PF6)2 (L1, R = Fc; L2, R = C6H4Fc) produce, in contact with aqueous electrolytes, anion-assisted reversible solid-state oxidation/reduction reactions in voltammetry and a pure anion transfer reaction determining the open circuit potential in potentiometric measurements. The mid-peak potentials determined in voltammetry and the open circuit potential determined in potentiometry exhibit differences, which allow accessing the individual contributions of Gibbs energies of electron and ion transfer. This is the second example of a solid compound where this separation is possible. Monitoring of anion insertion by electron microscopy (field emission scanning microscopy/energy-dispersive X-ray analysis (FESEM/EDX)) experiments is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kharton VV (2009) Solid state electrochemistry I. Fundamentals, materials and their applications. Wiley, New York

    Book  Google Scholar 

  2. Scholz F, Meyer B (1998) Electroanalytical chemistry. A Series of Advances. Bard AJ, Rubinstein I (eds), Marcel Dekker, New York, 20:1−86

  3. Scholz F, Schröder U, Gulaboski R, Doménech-Carbó A (2014) Electrochemistry of immobilized particles and droplets, 2nd edit. Monographs in Electrochemistry Series, F. Scholz, Ed. Springer, Berlin-Heidelberg

  4. Doménech-Carbó A, Labuda J, Scholz F (2013) Pure Appl Chem 85:609–631, IUPAC Technical Report

    Google Scholar 

  5. Shaw SJ, Marken F, Bond AM (1996) Electroanalysis 8:732–741

    Article  CAS  Google Scholar 

  6. Suarez MF, Bond AM, Compton RC (1999) J Solid State Electrochem 4:24–33

    Article  CAS  Google Scholar 

  7. Wooster TJ, Bond AM, Honeychurch MJ (2001) Electrochem Commun 3:746–752

    Article  CAS  Google Scholar 

  8. Wooster TJ, Bond AM, Honeychurch MJ (2003) Anal Chem 75:586–592

    Article  CAS  Google Scholar 

  9. Wooster TJ, Bond AM (2003) Analyst 128:1386–1390

    Article  CAS  Google Scholar 

  10. Doménech-Carbó A, Navarro P, Arán VJ, Muro B, Montoya N, García-España E (2010) Analyst 135:1449–1455

    Article  Google Scholar 

  11. Cisternas R, Kahlert H, Wulff H, Scholz F (2015) Electrochem Commun 56:34–37

    Article  CAS  Google Scholar 

  12. Bach H, Baucke FGK, Krause D (eds) (2001) Electrochemistry of glasses and glass melts, including glass electrodes. Springer, Berlin

    Google Scholar 

  13. Baucke FGK (2011) J Solid State Electrochem 15:23–46

    Article  CAS  Google Scholar 

  14. Doménech-Carbó A, Koshevoy IO, Montoya N, Pakkanen TA (2011) Electrochem Commun 13:96–98

    Article  Google Scholar 

  15. Doménech-Carbó A, Koshevoy IO, Montoya N, Karttunen AJ, Pakkanen TA (2011) J Chem Eng Data 56:4577–4586

    Article  Google Scholar 

  16. Doménech-Carbó A, Koshevoy IO, Montoya N, Pakkanen TA (2010) Electrochem Commun 12:206–209

    Article  Google Scholar 

  17. Doménech-Carbó A, Koshevoy IO, Montoya N, Pakkanen TA (2010) Anal Bioanal Chem 397:2013–2022

    Article  Google Scholar 

  18. Dau TM, Shakirova JR, Doménech-Carbó A, Jänis J, Haukka M, Grachova EV, Pakkanen TA, Tunik SP, Koshevoy IO (2013) Eur J Inorg Chem 4976–4983

  19. Koshevoy IO, Smirnova ES, Doménech-Carbó A, Karttunen AJ, Haukka M, Tunik SP, Pakkanen TA (2009) Dalton Trans 8392 − 8398

  20. Scholz F, Komorsky-Lovrić Š, Lovrić M (2000) Electrochem Commun 2:112–118

    Article  CAS  Google Scholar 

  21. Samec Z (2004) Pure Appl Chem 76:2147–2180

    Article  CAS  Google Scholar 

  22. Dryfe RAW (2006) PhysChemChemPhys 8:1869–1883

    CAS  Google Scholar 

  23. Langmaier J, Samec Z (2007) Electrochem Commun 9:2633–2638

    Article  CAS  Google Scholar 

  24. Sherburn A, Platt M, Arrigan DWM, Boag NM, Dryfe RAW (2003) Analyst 128:1187–1192

    Article  CAS  Google Scholar 

  25. Josserand J, Lagger G, Jensen H, Ferrigno R, Girault HH (2003) J Electroanal Chem 546:1–13

    Article  CAS  Google Scholar 

  26. Sun P, Laforge FO, Mirkin MV (2007) PhysChemChemPhys 9:802–823

    CAS  Google Scholar 

  27. Sun P, Laforge FO, Mirkin MV (2007) J Am Chem Soc 129:12410–12411

    Article  CAS  Google Scholar 

  28. Olaya AJ, Méndez MA, Cortes-Salazar F, Girault HH (2010) J Electroanal Chem 644:60–66

    Article  CAS  Google Scholar 

  29. Gulaboski R, Scholz F (2003) J Phys Chem B 107:5650–5657

    Article  CAS  Google Scholar 

  30. Scholz F (2006) Annu Rep Progr Chem Sect C 102:43–70

    Article  CAS  Google Scholar 

  31. Marken F, McKenzie KJ, Shul G, Opallo M (2005) Faraday Discuss 129:219–229

    Article  CAS  Google Scholar 

  32. MacDonald SM, Opallo M, Klamt A, Eckert F, Marken F (2008) PhysChemChemPhys 10:3925–3933

    CAS  Google Scholar 

  33. Doménech-Carbó A, Montoya N, Scholz F (2011) J Electroanal Chem 657:117–122

    Article  Google Scholar 

  34. Doménech-Carbó A (2004) J Phys Chem C 116:25977−25983

  35. Doménech-Carbó A, Koshevoy IO, Montoya N, Pakkanen TA, Doménech-Carbó MT (2012) J Phys Chem C 116:25984–25992

    Article  Google Scholar 

  36. Doménech-Carbó A, Scholz F, Montoya N (2012) J Phys Chem C 116:25993–25999

    Article  Google Scholar 

  37. Lovrić M, Scholz F (1997) J Solid State Electrochem 1:108–113

    Article  Google Scholar 

  38. Lovrić M, Hermes M, Scholz F (1998) J Solid State Electrochem 2:401–404

    Article  Google Scholar 

  39. Oldham KB (1998) J Solid State Electrochem 2:367–377

    Article  CAS  Google Scholar 

  40. Lovrić M, Scholz F (1999) J Solid State Electrochem 3:172–175

    Article  Google Scholar 

  41. Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F (2000) J Solid State Electrochem 4:314–324

    Article  Google Scholar 

  42. Jaworsky A, Stojek Z, Scholz F (1993) J Electroanal Chem 354:1–9

    Article  Google Scholar 

  43. Hermes M, Lovrić M, Hartl M, Retter U, Scholz F (2001) J Electroanal Chem 501:193–204

    Article  CAS  Google Scholar 

  44. Pickup PG, Leidner CR, Denisevich P, Willman KW, Murray RW (1984) J Electroanal Chem 164:39–61

    Article  CAS  Google Scholar 

  45. Leidner CP, Denisevich P, Willman KW, Murray RW (1984) J Electroanal Chem 164:63–78

    Article  CAS  Google Scholar 

  46. Majunatha H, Suresh GS, Venkatesha TV (2011) J Solid State Electrochem 15:431–445

    Article  Google Scholar 

  47. Inzelt G (2011) J Solid State Electrochem 15:1711–1718

    Article  CAS  Google Scholar 

  48. Scholz F, Hermes M (1999) Electrochem Commun 1:345–348, see corrigendum in Electrochem Commun (2000) 214

    Article  CAS  Google Scholar 

  49. Doménech-Carbó A, Formentin P, Garcia H, Sabater MJ (2000) Eur J Inorg Chem (2000) 1339–1344

  50. Doménech-Carbó A, Sánchez-Ramos S, Doménech-Carbó MT, Gimeno-Adelantado JV, Bosch-Reig F, Yusá-Marco DJ, Saurí-Peris MC (2002) Electroanalysis 14:685–696

    Article  Google Scholar 

  51. Doménech-Carbó A, Martini M, De Carvalho LM, Doménech-Carbó MT (2012) J Electroanal Chem. 684: 13−19

  52. All these models were based on simulated voltammograms for reversible processes involving species in solution. In view of the close similarity of this voltammetric response to that theoretically predicted for reversible, diffusion-controlled processes involving ion-insertion solids (see ref. [38]), it appears reasonable to extend the former formulations to the case of solids.

  53. Doménech-Carbó A, García H, Doménech-Carbó MT, Llabrés-i-Xamena F (2006) Electrochem Commun 8:1830–1834

    Article  Google Scholar 

  54. Doménech-Carbó A, García H, Doménech-Carbó MT, Llabrés-i-Xamena F (2007) J Phys Chem C 111:13701–13711

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks go to Prof. Fritz Scholz for his valuable comments and discussion during the preparation of the manuscript. Financial support has been provided by the Spanish MYCINN CTQ2014-53736-C3-2-P project also supported by ERDF funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Doménech-Carbó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doménech-Carbó, A., Koshevoy, I.O. & Montoya, N. Separation of the ionic and electronic contributions to the overall thermodynamics of the insertion electrochemistry of some solid Au(I) complexes. J Solid State Electrochem 20, 673–681 (2016). https://doi.org/10.1007/s10008-015-3092-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3092-4

Keywords

Navigation