Skip to main content
Log in

Electrochemical reactivity and stability of platinum nanoparticles in imidazolium-based ionic liquids

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrocatalytic activity of synthesized quasi-spherical Pt nanoparticles (NPs) has been studied, taking as a model the COads electrooxidation reaction in two imidazolium-based ionic liquids such as 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim+][NTf2 ] and 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim+][BF4 ]. In particular, the effect of (i) water content, (ii) temperature, and (iii) nature of the room-temperature ionic liquid (RTIL) on the electrocatalytic behavior of these Pt NPs has been systematically evaluated. The obtained results show how important are those parameters, since the COads oxidation peak potential exhibits a great sensitivity depending on the water content, temperature, and nature of the RTIL used. Interestingly, the charge density associated with the COads electrooxidation peak strongly depends on the nature of the ionic liquid, which reflects the complexity of this electrocatalytic reaction in this media. Moreover, Pt NP electrocatalyst degradation in those RTILs, considered as a loss of electrochemically active area, has been evaluated and shows high stability despite the extreme potentials afforded in RTILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    Article  CAS  Google Scholar 

  2. Endres F, El Abedin SZ (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116

    Article  CAS  Google Scholar 

  3. Pandey S (2005) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556:38–45

    Article  Google Scholar 

  4. Erdem A, Muti M, Mese F, Eksin E (2014) Chitosan-ionic liquid modified single-use sensor for electrochemical monitoring of sequence-selective DNA hybridization. Colloids Surf B 114:261–268

    Article  CAS  Google Scholar 

  5. Harun M, Sabri F, Muen I, Ali M, Azlan M, Bahadori L, Low CTJ (2014) Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries. Renew Sust Energ Rev 30:254–270

    Article  Google Scholar 

  6. De Souza RF, Padilha JC, Gonçalves RS, Dupont J (2003) Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochem Commun 5:728–731

    Article  Google Scholar 

  7. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  8. O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J Chem Eng Data 53:2884–2891

    Article  Google Scholar 

  9. Darling HE (1964) Conductivity of sulfuric acid solutions. J Chem Eng Data 9:421–426

    Article  CAS  Google Scholar 

  10. Rhodes FH, Barbour CB (1923) The viscosities of mixtures of sulfuric acid and water. Ind Eng Chem 15:850–852

    Article  CAS  Google Scholar 

  11. Wen Z, Liu J, Li J (2008) Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv Mater 20:743–747

    Article  CAS  Google Scholar 

  12. Song C (2002) Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century. Catal Today 77:17–49

    Article  CAS  Google Scholar 

  13. Liu R, Duay J, Lee SB (2011) Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun 47:1384–1404

    Article  CAS  Google Scholar 

  14. Rigsby MA, Zhou WP, Lewera A, Duong HT, Bagus PS, Jaegermann W, Hunger R, Wieckowski A (2008) Experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru. J Phys Chem C 112:15595–15601

    Article  CAS  Google Scholar 

  15. Neyerlin KC, Srivastava R, Yu C, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR). J Power Sources 186:261–267

    Article  CAS  Google Scholar 

  16. Solla-Gullón J, Montiel V, Aldaz A, Clavilier J (2000) Electrochemical characterization of platinum nanoparticles prepares by microemulsion: how to clean them without loss of crystalline surface structure. J Electroanal Chem 491:69–77

    Article  Google Scholar 

  17. Sánchez-Sánchez CM, Solla-Gullón J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132:5622–5624

    Article  Google Scholar 

  18. Vidal-Iglesias FJ, Solla-Gullón J, Montiel V, Feliu JM, Aldaz A (2007) Screening of electrocatalysts for direct ammonia fuel cell: ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(100) nanoparticles. J Power Sources 171:448–456

    Article  CAS  Google Scholar 

  19. Lou J, Wang L, Mott D, Njoki PN, Lin Y, He T, Xu A, Wanjana BN, Lim IS, Zhong CJ (2008) Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Adv Mater 20:4342–4347

    Article  Google Scholar 

  20. Wang X, You Z, Cheng Y, Sha H, Li G, Zhu H, Sun W (2015) Application of nanosized gold and graphene modified carbon ionic liquid electrode for the sensitive electrochemical determination of folic acid. J Mol Liq 204:112–117

    Article  CAS  Google Scholar 

  21. Wang D, Dou W, Zhao G, Chen Y (2014) Immunosensor based on electrodeposition of gold-nanoparticles and ionic liquid composite for detection of Salmonella pullorum. J Microbiol Meth 106:110–118

    Article  CAS  Google Scholar 

  22. Zhang D, Chang WC, Okajima T, Ohsaka T (2011) Electrodeposition of platinum nanoparticles in a room-temperature ionic liquid. Langmuir 27:14662–14668

    Article  CAS  Google Scholar 

  23. Zhang G, Zhou H, An C, Liu D, Huang Z, Kuang Y (2012) Bimetallic palladium-gold nanoparticles synthesized in ionic liquid microemulsion. Colloid Polym Sci 290:1435–1441

    Article  CAS  Google Scholar 

  24. Wang X, Cheng Y, You Z, Sha H, Gong S, Liu J, Sun W (2015) Sensitive electrochemical determination of oxalic acid in spinach samples by a graphene-modified carbon ionic liquid electrode. Ionics 21:877–884

    Article  CAS  Google Scholar 

  25. Ghilane J, Lacroix J-C (2013) Formation of a bifunctional redox system using electrochemical reduction of platinum in ferrocene based ionic liquid and its reactivity with aryldiazonium. J Am Chem Soc 135:4722–4728

    Article  CAS  Google Scholar 

  26. Hanc-Scherer FA, Sánchez-Sánchez CM, Ilea P, Herrero E (2013) Surface-sensitive electrooxidation of carbon monoxide in room temperature ionic liquids. ACS Catal 3:2935–2938

    Article  CAS  Google Scholar 

  27. Herrero E, Alvarez B, Feliu JM, Blais S, Radovic-Hrapovic Z, Jerkiewicz G (2004) Temperature dependence of the COads oxidation process on Pt(111), Pt(100) and Pt(110) electrodes. J Electroanal Chem 567:139–149

    Article  CAS  Google Scholar 

  28. Ejigu A, Johnson L, Licence P, Walsh DA (2012) Electrocatalytic oxidation of methanol and carbon monoxide at platinum in protic ionic liquids. Electrochem Commun 23:122–124

    Article  CAS  Google Scholar 

  29. Herrero E, Feliu JM, Blais S, Radovec-Hrapovic Z, Jerkiewicz G (2000) Temperature dependence of CO chemisorption and its oxidative desorption on the Pt(111) electrode. Langmuir 16:4779–4783

    Article  CAS  Google Scholar 

  30. Ejigu A, Walsh DA (2014) The role of adsorbed ions during electrocatalysis in ionic liquids. J Phys Chem C 118:7414–7422

    Article  CAS  Google Scholar 

  31. Yang YY, Zhang LN, Osawa M, Cai WB (2013) Surface-enhanced infrared spectroscopic study of a CO-covered Pt electrode in room-temperature ionic liquid. J Phys Chem Lett 4:1582–1586

    Article  CAS  Google Scholar 

  32. Baldelli S (2008) Surface structure at the ionic liquid-electrified metal interface. Acc Chem Res 41:421–431

    Article  CAS  Google Scholar 

  33. Aliaga C, Santos CS, Baldelli S (2007) Surface chemistry of room-temperature ionic liquids. Phys Chem Chem Phys 9:3683–3700

    Article  CAS  Google Scholar 

  34. Baldelli S (2005) Probing electric field at the ionic liquid-electrode interface using sum frequency generation spectroscopy and electrochemistry. J Phys Chem B 109:13049–13051

    Article  CAS  Google Scholar 

  35. Lewandowski A, Waligora L, Galinski M (2009) Ferrocene as reference redox couple for aprotic ionic liquids. Electroanalysis 21:2221–2227

    Article  CAS  Google Scholar 

  36. Trasatti S, Petrii OA (1991) Real surface-area measurements in electrochemistry. Pure Appl Chem 63:711–734

    Article  CAS  Google Scholar 

  37. Solla-Gullón J, Rodríguez P, Herrero E, Aldaz A, Feliu JM (2008) Surface characterization of Pt electrodes. Phys Chem Chem Phys 10:1359–1373

    Article  Google Scholar 

  38. Solla-Gullón J, Vidal-Iglesias FJ, López-Cudero A, Garnier E, Feliu JM, Aldaz A (2008) Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys 10:3689–3698

    Article  Google Scholar 

  39. Widegren JA, Saurer EM, Marsh KN, Magee JW (2005) Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity. J Chem Thermodyn 37:569–575

    Article  CAS  Google Scholar 

  40. Ries LAS, do Amaral FA, Matos K, Martini EMA, de Souza MO, de Souza RF (2008) Evidence of change in the molecular organization of 1-n-butyl-2-methylimidazolium tetrafluoroborate ionic liquid solutions with the addition of water. Polyhedron 27:3287–3293

    Article  CAS  Google Scholar 

  41. Di Noto V, Negro E (2009) Pt-Fe and Pt-Ni carbon nitride-based ‘core-shell’ ORR electrocatalysts for polymer electrolyte membrane fuel cells. Fuel Cells 10:234–244

    Article  Google Scholar 

  42. Okoturo OO, VanderNoot TJ (2004) Temperature dependence of viscosity for room temperature ionic liquids. J Electroanal Chem 568:167–181

    Article  CAS  Google Scholar 

  43. Nishida T, Tashiro Y, Yamamoto M (2002) Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J Fluor Chem 120:135–141

    Article  Google Scholar 

  44. Zhang J, Bond AM (2005) Practical considerations associated with voltammetric studies in room temperature ionic liquids. Analyst 130:1132–1147

    Article  CAS  Google Scholar 

  45. Chang SH, Connell JG, Danilovic N, Subbaraman R, Chang K-C, Stamenkovic VR, Markovic NM (2014) Activity-stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss 176:125–133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the MICINN (Spain) (project CTQ2013-48280-C3-3-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Sánchez-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montiel, M.A., Solla-Gullón, J. & Sánchez-Sánchez, C.M. Electrochemical reactivity and stability of platinum nanoparticles in imidazolium-based ionic liquids. J Solid State Electrochem 20, 1043–1052 (2016). https://doi.org/10.1007/s10008-015-3014-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3014-5

Keywords

Navigation