Skip to main content
Log in

Influence of the metal loading on the electrocatalytic activity of carbon-supported (100) Pt nanoparticles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of the metal loading (i.e. interparticle distance) of shape-controlled Pt nanoparticles on their electrocatalytic properties is evaluated for the first time. For this purpose, carbon-supported cubic Pt nanoparticles (~17 nm) with different metal loadings were prepared, characterized and electrochemically tested. To avoid differences in particle size and shape/surface structure of the Pt nanoparticles between samples, all samples used in this work were prepared from a single batch. The surface structure of the Pt nanoparticles was evaluated through the so-called hydrogen region and showed a preferential (100) orientation. Interestingly, the electroactive surface area of the samples, estimated both from the H or CO stripping processes, was directly proportional to the total Pt mass, independently of the metal loading. The CO stripping profile was also found to be unaffected by the metal loading. However, for ammonia and formic acid electrooxidation, the activity obtained was dependent on the metal loading. For ammonia oxidation, the optimal loading was found to be about 20–30 wt%. Nevertheless, this trend may be altered by different factors including (i) active surface area, (ii) metal loading and (ii) thickness of the catalytic layer. For formic acid electrooxidation, the results obtained showed a clear decrease of the activity for increasing metal loadings which is explained in terms of formic acid consumption on the top layers of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen J, Lim B, Lee EP, Xia Y (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4(1):81–95

    Article  Google Scholar 

  2. Peng Z, Yang H (2009) Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4(2):143–164

    Article  CAS  Google Scholar 

  3. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39(6):2184–2202

    Article  CAS  Google Scholar 

  4. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110(6):3767–3804

    Article  CAS  Google Scholar 

  5. Vismadeb Mazumder YL, Sun S (2010) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20:1224–1234

    Article  Google Scholar 

  6. Koper MTM (2011) Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3(5):2054–2073

    Article  CAS  Google Scholar 

  7. Solla-Gullon J, Vidal-Iglesias FJ, Feliu JM (2011) Shape dependent electrocatalysis. Annu Rep Prog Chem, Sect C 107:263–297

    Article  CAS  Google Scholar 

  8. Wu B, Zheng N (2013) Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8(2):168–197

    Article  Google Scholar 

  9. You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42(7):2880–2904

    Article  CAS  Google Scholar 

  10. Sanchez-Sanchez CM, Solla-Gullon J, Montiel V (2013) Electrocatalysis at nanoparticles. In: Electrochemistry: volume 11—nanosystems electrochemistry, vol 11. The Royal Society of Chemistry., pp 34–70

    Google Scholar 

  11. Steven EF, Kleijn SCSL, Marc T, Koper M, Unwin PR (2014) Electrochemistry of nanoparticles. Angew Chem Int Ed 53(14):3558–3586

    Article  Google Scholar 

  12. Dai Y, Wang Y, Liu B, Yang Y (2015) Metallic nanocatalysis: an accelerating seamless integration with nanotechnology. Small 11(3):268–289

    Article  CAS  Google Scholar 

  13. H-l L, Nosheen F, Wang X (2015) Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chem Soc Rev 44(10):3056–3078

    Article  Google Scholar 

  14. Wang Y-J, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115(9):3433–3467

    Article  CAS  Google Scholar 

  15. Vidal-Iglesias FJ, Solla-Gullón J, Herrero E, Montiel V, Aldaz A, Feliu JM (2011) Evaluating the ozone cleaning treatment in shape-controlled Pt nanoparticles: evidences of atomic surface disordering. Electrochem Commun 13(5):502–505

    Article  CAS  Google Scholar 

  16. Watanabe M, Sei H, Stonehart P (1989) The influence of platinum crystallite size on the electroreduction of oxygen. J Electroanal Chem 261(2B):375–387

    Article  CAS  Google Scholar 

  17. Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticle surfaces. CRC Press, New York

    Book  Google Scholar 

  18. Maillard F, Eikerling M, Cherstiouk OV, Schreier S, Savinova E, Stimming U (2004) Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss 125:357–377

    Article  CAS  Google Scholar 

  19. Maillard F, Schreier S, Hanzlik M, Savinova ER, Weinkauf S, Stimming U (2005) Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys Chem Chem Phys 7(2):385–393

    Article  CAS  Google Scholar 

  20. Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, Markovic NM (2005) The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J Am Chem Soc 127(18):6819–6829

    Article  CAS  Google Scholar 

  21. Maillard F, Savinova ER, Stimming U (2007) CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J Electroanal Chem 599(2):221–232

    Article  CAS  Google Scholar 

  22. Seidel YE, Schneider A, Jusys Z, Wickman B, Kasemo B, Behm RJ (2008) Mesoscopic mass transport effects in electrocatalytic processes. Faraday Discuss 140:167–184

    Article  CAS  Google Scholar 

  23. Koper MTM (2009) Fuel cell catalysis: a surface science approach. electrocatalysis and electrochemistry. John Wiley & Sons, Hoboken, New Jersey

    Book  Google Scholar 

  24. López-Cudero A, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2010) CO electrooxidation on carbon supported platinum nanoparticles: effect of aggregation. J Electroanal Chem 644(2):117–126

    Article  Google Scholar 

  25. Nesselberger M, Roefzaad M, Fayçal Hamou R, Ulrich Biedermann P, Schweinberger FF, Kunz S, Schloegl K, Wiberg GKH, Ashton S, Heiz U, Mayrhofer KJJ, Arenz M (2013) The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat Mater 12(10):919–924

    Article  CAS  Google Scholar 

  26. Yang H, Kumar S, Zou S (2013) Electroreduction of O2 on uniform arrays of Pt nanoparticles. J Electroanal Chem 688:180–188

    Article  CAS  Google Scholar 

  27. Fabbri E, Taylor S, Rabis A, Levecque P, Conrad O, Kötz R, Schmidt TJ (2014) The effect of platinum nanoparticle distribution on oxygen electroreduction activity and selectivity. ChemCatChem 6(5):1410–1418

    Article  CAS  Google Scholar 

  28. Chumillas S, Busó-Rogero C, Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM (2011) Size and diffusion effects on the oxidation of formic acid and ethanol on platinum nanoparticles. Electrochem Commun 13(11):1194–1197

    Article  CAS  Google Scholar 

  29. Martinez-Rodriguez RA, Vidal-Iglesias FJ, Solla-Gullon J, Montiel V, Cabrera CR, Feliu JM (2014) Electrochemical study of the effect of adsorbates and precursors in the synthesis of well-defined platinum nanoparticles using water-in-oil microemulsion. Paper presented at the 2014 ECS and SMEQ Joint International Meeting, Cancun (Mexico)

    Google Scholar 

  30. Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla-Gullon J, Cabrera CR, Feliu JM (2014) Synthesis of Pt nanoparticles in water-in-oil microemulsion: on the effect of HCl on their surface structure. J Am Chem Soc 136(4):1280–1283

    Article  Google Scholar 

  31. Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla-Gullón J, Cabrera CR, Feliu JM (2014) Synthesis and electrocatalytic properties of H2SO4-induced (100) Pt nanoparticles prepared in water-in-oil microemulsion. ChemPhysChem 15(10):1997–2001

    Article  Google Scholar 

  32. Solla-Gullón J, Rodríguez P, Herrero E, Aldaz A, Feliu JM (2008) Surface characterization of platinum electrodes. Phys Chem Chem Phys 10(10):1359–1373

    Article  Google Scholar 

  33. Solla-Gullón J, Vidal-Iglesias FJ, López-Cudero A, Garnier E, Feliu JM, Aldaz A (2008) Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys 10(25):3689–3698

    Article  Google Scholar 

  34. Chen QS, Solla-Gullon J, Sun SG, Feliu JM (2010) The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure: the role of anion adsorption in fundamental electrocatalysis. Electrochim Acta 55(27):7982–7994

    Article  CAS  Google Scholar 

  35. Inaba M, Ando M, Hatanaka A, Nomoto A, Matsuzawa K, Tasaka A, Kinumoto T, Iriyama Y, Ogumi Z (2006) Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties. Electrochim Acta 52(4):1632–1638

    Article  CAS  Google Scholar 

  36. Nakamura M, Hanioka Y, Ouchida W, Yamada M, Hoshi N (2009) Estimation of surface structure and carbon monoxide oxidation site of shape-controlled Pt nanoparticles. ChemPhysChem 10(15):2719–2724

    Article  CAS  Google Scholar 

  37. Sanchez-Sanchez CM, Solla-Gullon J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132(16):5622–5624

    Article  CAS  Google Scholar 

  38. Urchaga P, Baranton S, Napporn TW, Coutanceau C (2010) Selective syntheses and electrochemical characterization of platinum nanocubes and nanotetrahedrons/octahedrons. Electrocatalysis 1:3–6

    Article  CAS  Google Scholar 

  39. Brimaud S, Jusys Z, Behm RJ (2011) Controlled surface structure for in situ ATR-FTIRS studies using preferentially shaped Pt nanocrystals. Electrocatalysis 2(2):69–74

    Article  CAS  Google Scholar 

  40. Coutanceau C, Urchaga P, Brimaud S, Baranton S (2012) Colloidal syntheses of shape- and size-controlled Pt nanoparticles for electrocatalysis. Electrocatalysis 3(2):75–87

    Article  CAS  Google Scholar 

  41. Gumeci C, Marathe A, Behrens RL, Chaudhuri J, Korzeniewski C (2014) Solvothermal synthesis and electrochemical characterization of shape-controlled Pt nanocrystals. J Phys Chem C 118(26):14433–14440

    Article  CAS  Google Scholar 

  42. Brimaud S, Jusys Z, Behm RJ (2014) Shape-selected nanocrystals for in situ spectro-electrochemistry studies on structurally well defined surfaces under controlled electrolyte transport: a combined in situ ATR-FTIR/online DEMS investigation of CO electrooxidation on Pt. Beilstein J Nanotech 5:735–746

    Article  CAS  Google Scholar 

  43. Aran-Ais RM, Vidal-Iglesias FJ, Solla-Gullon J, Herrero E, Feliu JM (2015) Electrochemical characterization of clean shape-controlled Pt nanoparticles prepared in presence of oleylamine/oleic acid. Electroanalysis 27:945–956

    Article  CAS  Google Scholar 

  44. Urchaga P, Baranton S, Coutanceau C, Jerkiewicz G (2012) Electro-oxidation of CO chem on Pt nanosurfaces: solution of the peak multiplicity puzzle. Langmuir 28(7):3658–3663

    Article  CAS  Google Scholar 

  45. Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM, Aldaz A (2006) CO monolayer oxidation on semi-spherical and preferentially oriented (100) and (111) platinum nanoparticles. Electrochem Commun 8(1):189–194

    Article  Google Scholar 

  46. Brimaud S, Pronier S, Coutanceau C, Léger JM (2008) New findings on CO electrooxidation at platinum nanoparticle surfaces. Electrochem Commun 10(11):1703–1707

    Article  CAS  Google Scholar 

  47. Urchaga P, Baranton S, Coutanceau C (2013) Changes in COchem oxidative stripping activity induced by reconstruction of Pt (1 1 1) and (1 0 0) surface nanodomains. Electrochim Acta 92:438–445

    Article  CAS  Google Scholar 

  48. Coutanceau C, Lamy C, Urchaga P, Baranton S (2012) Platinum activity for CO electrooxidation: from single crystal surfaces to nanosurfaces and real fuel cell nanoparticles. Electrocatalysis 3(3):304–312

    Article  CAS  Google Scholar 

  49. Chen D, Tao Q, Liao LW, Liu SX, Chen YX, Ye S (2011) Determining the active surface area for various platinum electrodes. Electrocatalysis 2:207–219

    Article  CAS  Google Scholar 

  50. Mayrhofer KJJ, Arenz M, Blizanac BB, Stamenkovic V, Ross PN, Markovic NM (2005) CO surface electrochemistry on Pt-nanoparticles: a selective review. Electrochim Acta 50(25–26):5144–5154

    Article  CAS  Google Scholar 

  51. Cherstiouk OV, Simonov PA, Savinova ER (2003) Model approach to evaluate particle size effects in electrocatalysis: preparation and properties of Pt nanoparticles supported on GC and HOPG. Electrochim Acta 48(25–26):3851–3860

    Article  CAS  Google Scholar 

  52. Cherstiouk OV, Simonov PA, Zaikovskii VI, Savinova ER (2003) CO monolayer oxidation at Pt nanoparticles supported on glassy carbon electrodes. J Electroanal Chem 554:241–251

    Article  Google Scholar 

  53. Lai SCS, Lebedeva NP, Housmans THM, Koper MTM (2007) Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes. Top Catal 46(3–4):320–333

    Article  CAS  Google Scholar 

  54. Lebedeva NP, Koper MTM, Herrero E, Feliu JM, Van Santen RA (2000) CO oxidation on stepped Pt n (111) × (111) electrodes. J Electroanal Chem 487(1):37–44

    Article  CAS  Google Scholar 

  55. Lebedeva NP, Rodes A, Feliu JM, Koper MTM, Van Santen RA (2002) Role of crystalline defects in electrocatalysis: CO adsorption and oxidation on stepped platinum electrodes as studied by in situ infrared spectroscopy. J Phys Chem B 106(38):9863–9872

    Article  CAS  Google Scholar 

  56. Vidal-Iglesias FJ, Solla-Gullón J, Campina JM, Herrero E, Aldaz A, Feliu JM (2009) CO monolayer oxidation on stepped Pt (S) (n-1) (100) × (110) surfaces. Electrochim Acta 54(19):4459–4466

    Article  CAS  Google Scholar 

  57. Farias MJS, Tanaka AA, Tremiliosi G, Feliu JM (2011) On the apparent lack of preferential site occupancy and electrooxidation of CO adsorbed at low coverage onto stepped platinum surfaces. Electrochem Commun 13(4):338–341

    Article  CAS  Google Scholar 

  58. Farias MJS, Busó-Rogero C, Gisbert R, Herrero E, Feliu JM (2013) Influence of the CO adsorption environment on its reactivity with (111) terrace sites in stepped Pt electrodes under alkaline media. J Phys Chem C 118(4):1925–1934

    Article  Google Scholar 

  59. Farias MJS, Herrero E, Feliu JM (2013) Site selectivity for CO adsorption and stripping on stepped and kinked platinum surfaces in alkaline medium. J Phys Chem C 117(6):2903–2913

    Article  CAS  Google Scholar 

  60. García G, Koper MTM (2011) Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells. ChemPhysChem 12(11):2064–2072

    Article  Google Scholar 

  61. Garcia G, Koper MTM (2009) Mechanism of electro-oxidation of carbon monoxide on stepped platinum electrodes in alkaline media: a chronoamperometric and kinetic modeling study. Phys Chem Chem Phys 11(48):11437–11446

    Article  CAS  Google Scholar 

  62. Housmans THM, Hermse CGM, Koper MTM (2007) CO oxidation on stepped single crystal electrodes: a dynamic Monte Carlo study. J Electroanal Chem 607(1–2):69–82

    Article  CAS  Google Scholar 

  63. Vidal-Iglesias FJ, Garcia-Araez N, Montiel V, Feliu JM, Aldaz A (2003) Selective electrocatalysis of ammonia oxidation on Pt (100) sites in alkaline medium. Electrochem Commun 5(1):22–26

    Article  CAS  Google Scholar 

  64. Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P, Herrero E, Montiel V, Feliu JM, Aldaz A (2004) Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem Commun 6(10):1080–1084

    Article  CAS  Google Scholar 

  65. Rosca V, Duca M, De Groot MT, Koper MTM (2009) Nitrogen cycle electrocatalysis. Chem Rev 109(6):2209–2244

    Article  CAS  Google Scholar 

  66. Vidal-Iglesias FJ, Solla-Gullón J, Feliu JM, Baltruschat H, Aldaz A (2006) DEMS study of ammonia oxidation on platinum basal planes. J Electroanal Chem 588(2):331–338

    Article  CAS  Google Scholar 

  67. Vidal-Iglesias FJ, Solla-Gullón J, Montiel V, Feliu JM, Aldaz A (2005) Ammonia selective oxidation on Pt (100) sites in an alkaline medium. J Phys Chem B 109(26):12914–12919

    Article  CAS  Google Scholar 

  68. Vidal-Iglesias FJ (2005) Doctoral Thesis. Estudio de la electrooxidación de amoniaco en medio básico sobre platino: superficies bien definidas y nanopartículas. University of Alicante, Alicante (Spain)

    Google Scholar 

  69. Rosca V, Koper MTM (2006) Electrocatalytic oxidation of ammonia on Pt (111) and Pt (100) surfaces. Phys Chem Chem Phys 8(21):2513–2524

    Article  CAS  Google Scholar 

  70. Shao M (2013) Electrocatalysis in fuel cells: a non- and low- platinum approach. Springer, London

    Book  Google Scholar 

  71. Feliu JM, Herrero E (2003) Formic acid oxidation. In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 2. John Wiley & Sons, Ltd, Chichester, pp 625–634

    Google Scholar 

  72. Jiang K, Zhang HX, Zou S, Cai WB (2014) Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys Chem Chem Phys 16(38):20360–20376

    Article  CAS  Google Scholar 

  73. Cuesta A, Cabello G, Osawa M, Gutiérrez C (2012) Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catal 2(5):728–738

    Article  CAS  Google Scholar 

  74. Osawa M, Komatsu K, Samjeske G, Uchida T, Ikeshoji T, Cuesta A, Gutierrez C (2011) The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum. Angew Chem Int Ed 50(5):1159–1163

    Article  CAS  Google Scholar 

  75. Cuesta A, Cabello G, Gutierrez C, Osawa M (2011) Adsorbed formate: the key intermediate in the oxidation of formic acid on platinum electrodes. Phys Chem Chem Phys 13(45):20091–20095

    Article  CAS  Google Scholar 

  76. Chen YX, Heinen M, Jusys Z, Behm RJ (2006) Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode? Langmuir 22(25):10399–10408

    Article  CAS  Google Scholar 

  77. Chen YX, Miki A, Ye S, Sakai H, Osawa M (2003) Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc 125(13):3680–3681

    Article  CAS  Google Scholar 

  78. Grozovski V, Vidal-Iglesias FJ, Herrero E, Feliu JM (2011) Adsorption of formate and its role as intermediate in formic acid oxidation on platinum electrodes. ChemPhysChem 12(9):1641–1644

    Article  CAS  Google Scholar 

  79. Joo J, Uchida T, Cuesta A, Koper MTM, Osawa M (2014) The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: a mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry. Electrochim Acta 129:127–136

    Article  CAS  Google Scholar 

  80. Brimaud S, Solla-Gullon J, Weber I, Feliu JM, Behm RJ (2014) Formic acid electrooxidation on noble-metal electrodes: role and mechanistic implications of pH, surface structure, and anion adsorption. ChemElectroChem 1(6):1075–1083

    Article  CAS  Google Scholar 

  81. Joo J, Uchida T, Cuesta A, Koper MTM, Osawa M (2013) Importance of acid–base equilibrium in electrocatalytic oxidation of formic acid on platinum. J Am Chem Soc 135(27):9991–9994

    Article  CAS  Google Scholar 

  82. Haan JL, Masel RI (2009) The influence of solution pH on rates of an electrocatalytic reaction: formic acid electrooxidation on platinum and palladium. Electrochim Acta 54(16):4073–4078

    Article  CAS  Google Scholar 

  83. Boronat-Gonzalez A, Herrero E, Feliu JM (2014) Fundamental aspects of HCOOH oxidation at platinum single crystal surfaces with basal orientations and modified by irreversibly adsorbed adatoms. J Solid State Electrochem 18(5):1181–1193

    Article  CAS  Google Scholar 

  84. Koper MTM, Lai SCS, Herrero E (2009) Mechanisms of the oxidation of carbon monoxide and small organic molecules at metal electrodes. In: Koper MTM (ed) Fuel cell catalysis, a surface science approach. John Wiley & Sons, Inc, Hoboken, NJ, pp 159–208

    Chapter  Google Scholar 

  85. Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735

    Article  CAS  Google Scholar 

  86. Grozovski V, Solla-Gullon J, Climent V, Herrero E, Feliu JM (2010) Formic acid oxidation on shape-controlled pt nanoparticles studied by pulsed voltammetry. J Phys Chem C 114(32):13802–13812

    Article  CAS  Google Scholar 

  87. Maciá MD, Herrero E, Feliu JM (2003) Formic acid oxidation on Bi-Pt (111) electrode in perchloric acid media. A kinetic study. J Electroanal Chem 554:25–34

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Ministerio de Economía y Competitividad (MINECO) through project CTQ2013-48280-C3-3-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Solla-Gullón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal-Iglesias, F.J., Montiel, V. & Solla-Gullón, J. Influence of the metal loading on the electrocatalytic activity of carbon-supported (100) Pt nanoparticles. J Solid State Electrochem 20, 1107–1118 (2016). https://doi.org/10.1007/s10008-015-2954-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2954-0

Keywords

Navigation