Skip to main content
Log in

Electrode characteristics for ozone production: a case study using undoped and doped PbO2 on porous platinised titanium substrates

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The primary aim of this paper is the study of the stability and electrochemical activity of PbO2 electrodeposited onto porous, platinised Ti substrates. The evolution of O2 from H2O oxidation, on as-prepared electrodes, results in the opening of large pores that effectively work as gas channels for removing O2 generated inside the porous structure, thus favouring the reaction penetration deeper into the pores. A serious problem that limits the utilisation of the internal pore surface is the instability of PbO2 towards corrosion at high positive potentials or currents. Occlusion of pores by corrosion products is clearly demonstrated by SEM analysis of electrodes after operation as O2 evolving anodes. Doping PbO2 with Fe3+ and Co2+ yields anodes that resist corrosion up to relatively high anodic potentials/currents; this extends the anode lifetime by decreasing amorphisation of the electrocatalyst and its partial detachment caused by a high pressure of O2 formed inside the pores during water electrolysis. This is an important result since stability of electrodes is as important as their electrochemical activity for practical applications.In the domain of high positive potentials, PbO2 doping by Fe3+ and Co2+ results in a significant increase of the current efficiency of ozone generation. The magnitude of the observed increase depends on the individual characteristics of the doping cation and of the electrolyte employed. Possible involvement of higher oxidation states of cobalt and iron in the reaction mechanism is discussed on the basis of published literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ibl N, Vogt H (1981) In: Bockris JOM, Conway BE, Yeager E, White RE (eds) Comprehensive Treatise of Electrochemistry Vol. 2. Plenum Press, New York

    Google Scholar 

  2. Li X, Pletcher FC Walsh D (2011) Chem Soc Rev 40:3879–3894

    Article  CAS  Google Scholar 

  3. Devilliers D, Baudin T, Din Thi MT, Mahe E (2004) Electrochim Acta 49:2369–2377

    Article  CAS  Google Scholar 

  4. Velichenko AB, Amadelli R, Benedetti A, Girenko DV, Kovalyov SV, Danilov FI (2002) J Electrochem Soc 149:C445–C449

    Article  CAS  Google Scholar 

  5. Pavlov D, Balkanov I (1992) J Electrochem Soc 139:1830–1835

    Article  CAS  Google Scholar 

  6. Pavlov D (1992) J Electrochem Soc 139:3075–3080

    Article  CAS  Google Scholar 

  7. Amadelli R, Maldotti A, Molinari A, Danilov FI, Velichenko AB (2002) J Electroanal Chem 534:1–12

    Article  CAS  Google Scholar 

  8. Bredow T, Jug K (1995) Surf Sci 327:398–408

    Article  CAS  Google Scholar 

  9. Amadelli R, Samiolo L, De Battisti A, Velichenko AB (2011) J Electrochem Soc 158:P87–P92

    Article  CAS  Google Scholar 

  10. Bocci V (2005) Ozone-a new medical drug. Springer, Dordrecht

  11. Da Silva LM, Jardim WF (2006) Quim Nov. 29:310–317

  12. Beltrán FJ (2004) Ozone reaction kinetics for water and wastewater system. Lewis Publisher, Boca Raton

    Google Scholar 

  13. Amadelli R, De Battisti A, Girenko DV, Kovalyov SV, Velichenko AB (2000) Electrochim Acta 46:341–347

    Article  CAS  Google Scholar 

  14. Murphy OJ, Hitchens GD (1999) US Patent 5972196

  15. Christensen PA, Yonar T, Zakaria K (2013) Ozone-Sci Eng 35:149–167

    Article  CAS  Google Scholar 

  16. Wang Y-H, Chen Q-Y (2013) Int J Electrochem 128248, 7 pages

  17. Doménech-Carbó A (2010) Electrochemistry of porous materials. CRC Press, Boca Raton

    Google Scholar 

  18. Montilla F, Morallón E, Vázquez JL (2005) J Electrochem Soc 152:B421–B427, and refs. therein

    Article  CAS  Google Scholar 

  19. Yang C, Park S-M (2013) Electrochim Acta 108:86–94

    Article  CAS  Google Scholar 

  20. Costa FR, Franco DV, Da Silva LM (2013) Electrochim Acta 90:332

    Article  CAS  Google Scholar 

  21. Saleh MM (2007) J Solid State Electrochem 11:811–820

    Article  CAS  Google Scholar 

  22. Awad MI, Saleh MM, Ohsaka T (2006) J Electrochem Soc 153:D207–D212

    Article  CAS  Google Scholar 

  23. Amadelli R, Armelao L, Velichenko AB, Nikolenko NV, Girenko DV, Kovalyov SV, Danilov FI (1999) Electrochim Acta 45:713–720

    Article  CAS  Google Scholar 

  24. Velichenko AB, Amadelli R, Baranova EA, Girenko DV, Danilov FI (2002) J Electroanal Chem 527:56–64

    Article  CAS  Google Scholar 

  25. Velichenko AB, Amadelli R, Zucchini GL, Girenko DV, Danilov FI (2000) Electrochim Acta 45:4341–4350

    Article  CAS  Google Scholar 

  26. Shmychkova O, Luk’yanenko T, Velichenko A, Meda L, Amadelli R (2013) Electrochim Acta 111:332–338

    Article  CAS  Google Scholar 

  27. Shmychkova O, Luk’yanenko T, Yakubenko A, Amadelli R, Velichenko A (2015) Appl Catal B: Environ 162:346–351

    Article  CAS  Google Scholar 

  28. Devilliers D, Mahé E (2010) Electrochim Acta 55:8207–8214

    Article  CAS  Google Scholar 

  29. Devilliers D, Din Thi MT, Mahé E, Xuan QL (2003) Electrochim Acta 48:4301–4309

    Article  CAS  Google Scholar 

  30. Volkov VV, Yampolskii YP (2014) In: Volfkovitch YM, Bagotsky VS, Filippov AN (eds) Structural properties of porous materials and powders used in different fields of science and technology. Springer, London

    Google Scholar 

  31. Simon AC, Caulder SM (1971) J Electrochem Soc 118:659–665

    Article  CAS  Google Scholar 

  32. Lai Y, Li Y, Jiang L, Xu W, Lv X, Li J, Liu Y (2012) J Electroanal Chem 671:16–23

    Article  CAS  Google Scholar 

  33. Hitz C, Lasia A (2001) J Electroanal Chem 500:213–222

    Article  CAS  Google Scholar 

  34. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) Chem Cat Chem 2:724–761

    CAS  Google Scholar 

  35. Lyons MEG, Doyle RL (2011) Int J Electrochem Sci 6:5710–5730

    CAS  Google Scholar 

  36. Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) J Electroanal Chem 176:275–295

    Article  CAS  Google Scholar 

  37. Trasatti S (1984) Electrochim Acta 29:1503–1512

    Article  CAS  Google Scholar 

  38. Soderberg JN, Co AC, Sirk AHC, Birss VI (2006) J Phys Chem B 110:10401–10410

    Article  CAS  Google Scholar 

  39. Damjanovic A, Dey A, Bockris JOM (1966) Electrochim Acta 11:791–814

    Article  CAS  Google Scholar 

  40. Evdokimov SV (2000) Russ J Electrochem 36:236–239

    Article  CAS  Google Scholar 

  41. Evdokimov SV (2000) Russ J Electrochem 36:489–494

    Article  CAS  Google Scholar 

  42. Chirkov YG, Rostokin VI (2001) Russ J Electrochem 37:477–485

    Article  CAS  Google Scholar 

  43. Chirkov YG, Chernenko AA (2001) Russ J Electrochem 37:467–476

    Article  CAS  Google Scholar 

  44. Gorodetskii VV (2003) Russ J Electrochem 39:650–659

    Article  CAS  Google Scholar 

  45. Stucki S, Theis G, Kötz R, Devantay H, Christen HJ (1985) J Electrochem Soc 132:367–371

    Article  CAS  Google Scholar 

  46. Lopaev DV, Malykhin EM, Zyryanov SM (2011) J Phys D 44:015202 (16pp)

    Article  Google Scholar 

  47. Awad MI, Saleh MM (2010) J Solid State Electrochem 14:1877–1883

    Article  CAS  Google Scholar 

  48. Feng J, Johnson DC, Lowery SN, Carey JJ (1994) J Electrochem Soc 141:2708–2711

    Article  CAS  Google Scholar 

  49. Foller PC, Tobias CW (1981) J Phys Chem 85:3238–3244

    Article  CAS  Google Scholar 

  50. Amadelli R, Samiolo L, Velichenko AB (2013) J Serb Chem Soc 78:2099–2114

    Article  CAS  Google Scholar 

  51. Fernandez JL (2000) Gennero de Chialvo MR, Chialvo AC. Electrochem Commun 2:630–635

    Article  CAS  Google Scholar 

  52. Abaci S, Pekmez K, Yildiz A (2005) Electrochem Commun 7:328–332

    Article  CAS  Google Scholar 

  53. Gerken JB, Mc Alpin JG, Chen JYC, Rigsby ML, Casey VH, Britt RD, Stahl SS (2011) J Am Chem Soc 133:14431–14442

    Article  CAS  Google Scholar 

  54. Surendranath Y, Kanan MW, Nocera DG (2010) J Am Chem Soc 132:16507–16509

    Article  Google Scholar 

  55. Bajdich M, Garcia-Mota M, Vojvodic A, Nørskov JK, Bell A (2013) J Am Chem Soc 135:13521–13530

    Article  CAS  Google Scholar 

  56. Mattioli G, Giannozzi P, Amore Bonapasta A (2013) L Guidoni. J Am Chem Soc 135:15353–15363

    Article  CAS  Google Scholar 

  57. Sarma R, Angeles-Boza AM, Brinkley DW, Roth JP (2012) J Am Chem Soc 134:15371–15386

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Amadelli.

Additional information

This paper is dedicated to Prof. José H. Zagal in the occasion of his 65th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

(DOC 2336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosestolato, D., Amadelli, R. & Velichenko, A.B. Electrode characteristics for ozone production: a case study using undoped and doped PbO2 on porous platinised titanium substrates. J Solid State Electrochem 20, 1181–1190 (2016). https://doi.org/10.1007/s10008-015-2945-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2945-1

Keywords

Navigation