Skip to main content
Log in

Solvent effect on the anodic oxidation of tannic acids: EPR/UV–Vis spectroelectrochemical and DFT theoretical study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cyclic voltammetry of tannic acid mixture (TAM) in water, dimethylsulfoxide (DMSO), and acetonitrile (ACN) indicates the highest oxidation potential for TAM in ACN, followed by the slightly lowered potential in DMSO and a strongly shifted oxidation potential in water solutions, confirming its pH-dependent redox behavior. In situ EPR and UV–Vis spectroelectrochemical experiments were performed to follow the oxidation reactions of TAM in protic and aprotic media. The formation of an unstable semiquinone anion radical formed upon anodic oxidation of TAM was proved by in situ EPR spectroelectrochemistry both in DMSO and water solutions. The quantum chemical calculations of the model pyrogallol derivatives and tannic acid molecules with four and ten galloyl moieties estimated the role of the spatial hydrogen bonds on the proton affinities and suggested the possible interpretation of experimentally detected redox and spectroelectrochemical behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Crit Rev Food Sci Nutr 38:421–464

    Article  CAS  Google Scholar 

  2. Hagerman AE, Riedl KM, Rice RE (1999) Basic Life Sci 66:495–505

    CAS  Google Scholar 

  3. Jourdes M, Pouysegu L, Deffieux D, Teissedre P-L, Quideau S (2013) Hydrolyzable tannins: Gallotannins and ellagitannins. In: Ramawat KG, Merillon JM (eds) Natural products: Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin, pp 1975–2010

    Chapter  Google Scholar 

  4. Cao Y, Himmeldirk KB, Qian Y, Ren Y, Malki A, Chen X (2014) J Nat Med 68:465–472

    Article  CAS  Google Scholar 

  5. Zhang J, Li L, Kim SH, Hagerman AE, Lü J (2009) Pharm Res 26:2066–2080

    Article  CAS  Google Scholar 

  6. Qu XJ, Zhou J (2002) Chin J Anal Chem 30:192

    CAS  Google Scholar 

  7. Lu S (2004) Russ J Electrochem 40:750–754

    Article  Google Scholar 

  8. Wan H, Zou Q, Yan R, Zhao F, Zeng B (2007) Microchim Acta 159:109–115

    Article  CAS  Google Scholar 

  9. Xu L, He N, Du J, Deng Y (2008) Electrochem Commun 10:1657–1660

    Article  CAS  Google Scholar 

  10. Hung YT, Chen PC, Chen RLC, Cheng TJ (2008) Sensor Actuat B - Chem 130:135–140

    Article  CAS  Google Scholar 

  11. Xu L, He N, Du J, Deng Y, Li Z, Wang T (2009) Anal Chim Acta 634:49–53

    Article  CAS  Google Scholar 

  12. Raj MA, Revin SB, John SA (2013) Bioelectrochemistry 89:1–10

    Article  CAS  Google Scholar 

  13. Vu DL, Ertek B, Červenka L, Dilgin Y (2013) Int J Electrochem Sci 8:9278–9286

    CAS  Google Scholar 

  14. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers EMF, Rietjens IMCM (2001) Free Radic Biol Med 31:869

    Article  CAS  Google Scholar 

  15. Žemlička L, Fodran P, Lukeš V, Vagánek A, Slováková M, Staško A, Dubaj T, Liptaj T, Karabin M, Bírošová L, Rapta P (2014) Monatsh Chem 145:1307–1318

    Article  Google Scholar 

  16. Klein E, Rimarčík J, Lukeš V (2009) Acta Chim Slovaca 2:37–51

    Google Scholar 

  17. Rimarčík J, Lukeš V, Klein E, Ilčin M (2010) J Mol Struct (THEOCHEM) 952:25–30

    Article  Google Scholar 

  18. Rimarčík J, Lukes V, Klein E, Rottmannova L (2011) Comput Theor Chem 967:273–283

    Article  Google Scholar 

  19. Vagánek A, Rimarčík J, Lukeš V, Klein E (2012) Comput Theor Chem 991:192–200

    Article  Google Scholar 

  20. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  21. Grimme S, Ehrlich S, Goerigk L (2011) J Comp Chem 32:1456–1465

    Article  CAS  Google Scholar 

  22. Furche F, Ahlrichs R (2002) J Chem Phys 117:7433–7447

    Article  CAS  Google Scholar 

  23. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  24. Cancès E, Mennucci B (1998) J Math Chem 23:309–326

    Article  Google Scholar 

  25. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (THEOCHEM) 462:1–21

    Article  Google Scholar 

  26. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) J Comp Chem 30:2157–2164

    Article  Google Scholar 

  27. Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  28. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al. (2009) Gaussian, Inc., Wallingford CT

  29. Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939–947

    Article  CAS  Google Scholar 

  30. Molekel 4.3, Flukiger P, Luthi HP, Sortmann S, Weber J (2002) Swiss National Supercomputing Centre, Manno, Switzerland

  31. Vedernikova I, Salahub D, Proynov E (2003) J Mol Struct (THEOCHEM) 663:59–71

    Article  CAS  Google Scholar 

  32. Meyer TJ, Huynh MHV, Thorp HH (2007) Angew Chem Int Ed 46:5284–5304

    Article  CAS  Google Scholar 

  33. Angel LA, Ervin KM (2006) J Phys Chem A 110:10392–10403

    Article  CAS  Google Scholar 

  34. Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford

    Google Scholar 

  35. Fifen JJ, Nsangou M, Dhaouadi Z, Motapon O, Jaidane N (2011) Comp Theor Chem 966:232–243

    Article  CAS  Google Scholar 

  36. Rimarčík J, Lukeš V, Klein E, Ilčin M (2010) J Mol Struc 952:25–30

    Article  Google Scholar 

  37. Mejías JA, Lago S (2000) J Chem Phys 113:7306–7316

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Grant Agency of the Slovak Republic (Projects 1/0735/13 and 1/0307/14). We are grateful to the HPC center at the Slovak University of Technology in Bratislava, which is a part of the Slovak Infrastructure of High Performance Computing (SIVVP project, ITMS code 26230120002, funded by the European Region Development Funds, ERDF) for the computational time and resources made available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Lukeš.

Additional information

Dedicated to Prof. Mikhail A. Vorotyntsev in the occasion of his 70th birthday

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 111435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukeš, V., Darvasiová, D., Furdíková, K. et al. Solvent effect on the anodic oxidation of tannic acids: EPR/UV–Vis spectroelectrochemical and DFT theoretical study. J Solid State Electrochem 19, 2533–2544 (2015). https://doi.org/10.1007/s10008-015-2921-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2921-9

Keywords

Navigation