Skip to main content

Advertisement

Log in

Surface structure and composition effects on electrochemical reduction of carbon dioxide

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon dioxide electrochemical reduction has attracted significant attention due to its great potential in environmental protection and energy storage. In this mini-review, some recent progress in heterogeneous electrochemical reduction of carbon dioxide is summarized, with a particular emphasis on the effects of catalyst surface modification. Several structural (metal overlayers, particle size adjustment, roughness creation, special 2D or 3D structure patterning) and compositional (alloy, doping, oxide, and composite) modification techniques are reviewed and discussed. Research directions towards more advanced catalysts design are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. The state of greenhouse gases in the atmosphere based on global observations through 2013 (2014) WMO Greenhouse Gas Bulletin: 1–10

  2. Gibbins J, Chalmers H (2008) Carbon capture and storage. Energy Policy 36(12):4317–4322

    Article  Google Scholar 

  3. Lu X, Leung DY, Wang H, Leung MK, Xuan J (2014) Electrochemical reduction of carbon dioxide to formic acid. ChemElectroChem 1(5):836–849

    Article  CAS  Google Scholar 

  4. Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electrochemical conversion and utilization of CO2. Catal Sci Technol 2(1):19–28

    Article  CAS  Google Scholar 

  5. Darensbourg DJ (2010) Chemistry of carbon dioxide relevant to its utilization: a personal perspective. Inorg Chem 49(23):10765–10780

    Article  CAS  Google Scholar 

  6. Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731

    Article  CAS  Google Scholar 

  7. Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1):2–32

    Article  CAS  Google Scholar 

  8. Hori Y (2008) In: Vayenas C (ed) Modern aspects of electrochemistry, number 42. New York, Springer

    Google Scholar 

  9. Whipple DT, Kenis PJ (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1(24):3451–3458

    Article  CAS  Google Scholar 

  10. White JL, Herb JT, Kaczur JJ, Majsztrik PW, Bocarsly AB (2014) Photons to formate: efficient electrochemical solar energy conversion via reduction of carbon dioxide. J CO2 Util 7:1–5

    Article  CAS  Google Scholar 

  11. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38(1):89–99

    Article  CAS  Google Scholar 

  12. Costentin C, Robert M, Savéant JM (2013) Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev 42(6):2423–2436

    Article  CAS  Google Scholar 

  13. Lim RJ, Xie M, Sk MA, Lee JM, Fisher A, Wang X, Lim KH (2014) A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal Today 233:169–180

  14. Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43(2):631–675

    Article  CAS  Google Scholar 

  15. Hori Y, Kikuchi K, Murata A, Suzuki S (1986) Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem Lett 6:897–898

    Article  Google Scholar 

  16. Calle-Vallejo F, Koper M (2013) Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes. Angew Chem 125(28):7423–7426

    Article  Google Scholar 

  17. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3(9):1311–1315

    Article  CAS  Google Scholar 

  18. Tang W, Peterson AA, Varela AS, Jovanov ZP, Bech L, Durand WJ, Dahl S, Nørskov JK, Chorkendorff I (2012) The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys 14(1):76–81

    Article  CAS  Google Scholar 

  19. Peterson AA, Nørskov JK (2012) Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 3(2):251–258

    Article  CAS  Google Scholar 

  20. Stephens IE, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorff I (2012) Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci 5(5):6744–6762

    Article  CAS  Google Scholar 

  21. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5(11):909–913

    Article  CAS  Google Scholar 

  22. Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19

    Article  CAS  Google Scholar 

  23. Ma S, Kenis PJ (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2(2):191–199

    Article  Google Scholar 

  24. Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81(13):2819

    Article  Google Scholar 

  25. Reske R, Duca M, Oezaslan M, Schouten KJP, Koper MT, Strasser P (2013) Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J Phys Chem Lett 4(15):2410–2413

    Article  CAS  Google Scholar 

  26. Varela AS, Schlaup C, Jovanov ZP, Malacrida P, Horch S, Stephens IE, Chorkendorff I (2013) CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt (111) and Pt (211). J Phys Chem C 117(40):20500–20508

    Article  CAS  Google Scholar 

  27. Friebel D, Mbuga F, Rajasekaran S, Miller DJ, Ogasawara H, Alonso-Mori R, Sokaras D, Nordlund D, Weng T-C, Nilsson A (2014) Structure, redox chemistry, and interfacial alloy formation in monolayer and multilayer Cu/Au (111) model catalysts for CO2 electroreduction. J Phys Chem C 118(15):7954–7961

    Article  CAS  Google Scholar 

  28. Plana D, Flórez-Montaño J, Celorrio V, Pastor E, Fermín DJ (2013) Tuning CO2 electroreduction efficiency at Pd shells on Au nanocores. Chem Commun 49(93):10962–10964

    Article  CAS  Google Scholar 

  29. Lates V, Falch A, Jordaan A, Peach R, Kriek R (2014) An electrochemical study of carbon dioxide electroreduction on gold-based nanoparticle catalysts. Electrochim Acta 128:75–84

    Article  CAS  Google Scholar 

  30. Januszewska A, Jurczakowski R, Kulesza PJ (2014) CO2 electroreduction at bare and Cu-decorated Pd pseudomorphic layers: catalyst tuning by controlled and indirect supporting onto Au (111). Langmuir 30(47):14314–14321

    Article  CAS  Google Scholar 

  31. Obradović MD, Gojković SL (2013) HCOOH oxidation on thin Pd layers on Au: self-poisoning by the subsequent reaction of the reaction product. Electrochim Acta 88:384–389

    Article  Google Scholar 

  32. Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136(5):1734–1737

    Article  CAS  Google Scholar 

  33. Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P (2014) Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc 136(19):6978–6986

    Article  CAS  Google Scholar 

  34. Mistry H, Reske R, Zeng Z, Zhao ZJ, Greeley J, Strasser P, Cuenya BR (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136(47):16473–16476

    Article  CAS  Google Scholar 

  35. Kauffman DR, Alfonso D, Matranga C, Qian H, Jin R (2012) Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J Am Chem Soc 134(24):10237–10243

    Article  CAS  Google Scholar 

  36. Liu C, He H, Zapol P, Curtiss LA (2014) Computational studies of electrochemical CO2 reduction on subnanometer transition metal clusters. Phys Chem Chem Phys 16(48):26584–26599

    Article  CAS  Google Scholar 

  37. Goncalves M, Gomes A, Condeco J, Fernandes R, Pardal T, Sequeira C, Branco J (2010) Selective electrochemical conversion of CO2 to C2 hydrocarbons. Energy Convers Manag 51(1):30–32

    Article  CAS  Google Scholar 

  38. Marc T (2014) Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys Chem Chem Phys 16(24):12194–12201

    Article  Google Scholar 

  39. Rudnev AV, Ehrenburg MR, Molodkina EB, Botriakova IG, Danilov AI, Wandlowski T (2015) CO2 electroreduction on Cu-modified platinum single crystal electrodes in aprotic media. Electrocatalysis 6(1):42–50

    Article  CAS  Google Scholar 

  40. Chen Y, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc 134(49):19969–19972

    Article  CAS  Google Scholar 

  41. Li CW, Ciston J, Kanan MW (2014) Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508(7497):504–507

    Article  CAS  Google Scholar 

  42. Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134(17):7231–7234

    Article  CAS  Google Scholar 

  43. Xiao J, Kuc A, Frauenheim T, Heine T (2014) CO2 reduction at low overpotential on Cu electrodes in the presence of impurities at the subsurface. J Mater Chem A 2(14):4885–4889

    Article  CAS  Google Scholar 

  44. Lee CH, Kanan MW (2014) Controlling H+ vs CO2 reduction selectivity on Pb electrodes. ACS Catal 5(1):465–469

    Article  Google Scholar 

  45. Chen CS, Handoko AD, Wan JH, Ma L, Ren D, Yeo BS (2015) Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal Sci Technol 5(1):161–168

    Article  CAS  Google Scholar 

  46. Hori Y, Takahashi I, Koga O, Hoshi N (2002) Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B 106(1):15–17

    Article  CAS  Google Scholar 

  47. Fan M, Bai Z, Zhang Q, Ma C, Zhou XD, Qiao J (2014) Aqueous CO2 reduction on morphology controlled CuxO nanocatalysts at low overpotential. RSC Adv 4(84):44583–44591

    Article  CAS  Google Scholar 

  48. Chi D, Yang H, Du Y, Lv T, Sui G, Wang H, Lu J (2014) Morphology-controlled CuO nanoparticles for electroreduction of CO2 to ethanol. RSC Adv 4(70):37329–37332

    Article  CAS  Google Scholar 

  49. Goncalves M, Gomes A, Condeco J, Fernandes T, Pardal T, Sequeira C, Branco J (2013) Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits. Electrochim Acta 102:388–392

    Article  CAS  Google Scholar 

  50. DiMeglio JL, Rosenthal J (2013) Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J Am Chem Soc 135(24):8798–8801

    Article  CAS  Google Scholar 

  51. Xie JF, Huang YX, Li WW, Song XN, Xiong L, Yu HQ (2014) Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite. Electrochim Acta 139:137–144

    Article  CAS  Google Scholar 

  52. Bae JH, Han JH, Chung TD (2012) Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Phys Chem Chem Phys 14(2):448–463

    Article  CAS  Google Scholar 

  53. Sen S, Liu D, Palmore GTR (2014) Electrochemical reduction of CO2 at copper nanofoams. ACS Catal 4(9):3091–3095

    Article  CAS  Google Scholar 

  54. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Commun 5. doi:10.1038/ncomms4242

  55. Zhao W, Yang L, Yin Y, Jin M (2014) Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles. J Mater Chem A 2(4):902–906

    Article  CAS  Google Scholar 

  56. Christophe J, Doneux T, Buess-Herman C (2012) Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper–gold alloys. Electrocatalysis 3(2):139–146

    Article  CAS  Google Scholar 

  57. Kim D, Resasco J, Yu Y, Asiri AM, Yang P (2014) Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nature Commun 5. doi:10.1038/ncomms5948

  58. Jia F, Yu X, Zhang L (2014) Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. J Power Sources 252:85–89

    Article  CAS  Google Scholar 

  59. Hirunsit P (2013) Electroreduction of carbon dioxide to methane on copper, copper–silver, and copper–gold catalysts: a DFT study. J Phys Chem C 117(16):8262–8268

    Article  CAS  Google Scholar 

  60. Shironita S, Karasuda K, Sato K, Umeda M (2013) Methanol generation by CO2 reduction at a Pt–Ru/C electrocatalyst using a membrane electrode assembly. J Power Sources 240:404–410

    Article  CAS  Google Scholar 

  61. Karamad M, Tripkovic V, Rossmeisl J (2014) Intermetallic alloys as CO electroreduction catalysts—role of isolated active sites. ACS Catal 4(7):2268–2273

    Article  CAS  Google Scholar 

  62. Zhang S, Kang P, Ubnoske S, Brennaman MK, Song N, House RL, Glass JT, Meyer TJ (2014) Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc 136(22):7845–7848

    Article  CAS  Google Scholar 

  63. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R, Abiade J, Yarin AL, Salehi-Khojin A (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nature Commun 4. doi:10.1038/ncomms3819

  64. Tripkovic V, Vanin M, Karamad M, Björketun ME, Jacobsen KW, Thygesen KS, Rossmeisl J (2013) Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J Phys Chem C 117(18):9187–9195

    Article  CAS  Google Scholar 

  65. Detweiler ZM, White JL, Bernasek SL, Bocarsly AB (2014) Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. Langmuir 30(25):7593–7600

    Article  CAS  Google Scholar 

  66. Chen Y, Kanan MW (2012) Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc 134(4):1986–1989

    Article  CAS  Google Scholar 

  67. Ramesha GK, Brennecke JF, Kamat PV (2014) Origin of catalytic effect in the reduction of CO2 at nanostructured TiO2 films. ACS Catal 4(9):3249–3254

    Article  CAS  Google Scholar 

  68. Sekimoto T, Deguchi M, Yotsuhashi S, Yamada Y, Masui T, Kuramata A, Yamakoshi S (2014) Highly selective electrochemical reduction of CO2 to HCOOH on a gallium oxide cathode. Electrochem Commun 43:95–97

    Article  CAS  Google Scholar 

  69. Asadi M, Kumar B, Behranginia A, Rosen BA, Baskin A, Repnin N, Pisasale D, Phillips P, Zhu W, Haasch R (2014) Robust carbon dioxide reduction on molybdenum disulphide edges. Nature Commun 5. doi:10.1038/ncomms5470

  70. Oh Y, Vrubel H, Guidoux S, Hu X (2014) Electrochemical reduction of CO2 in organic solvents catalyzed by MoO2. Chem Commun 50(29):3878–3881

    Article  CAS  Google Scholar 

  71. Ullah N, Ali I, Jansen M, Omanovic S (2015) Electrochemical reduction of CO2 in an aqueous electrolyte employing an iridium/ruthenium-oxide electrode. Can J Chem Eng 93(1):55–62

    Article  CAS  Google Scholar 

  72. Frese KW (1991) Electrochemical reduction of CO2 at intentionally oxidized copper electrodes. J Electrochem Soc 138(11):3338–3344

    Article  CAS  Google Scholar 

  73. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5(5):7050–7059

    Article  CAS  Google Scholar 

  74. Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC (2011) Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 158(5):E45–E49

    Article  CAS  Google Scholar 

  75. Zhang YJ, Peterson AA (2015) Oxygen-induced changes to selectivity-determining steps in electrocatalytic CO2 reduction. Phys Chem Chem Phys 17(6):4505–4515

    Article  CAS  Google Scholar 

  76. Nie X, Griffin GL, Janik MJ, Asthagiri A (2014) Surface phases of Cu2O(111) under CO2 electrochemical reduction conditions. Catal Commun 52:88–91

    Article  CAS  Google Scholar 

  77. Kauffman DR, Ohodnicki PR, Kail BW, Matranga C (2011) Selective electrocatalytic activity of ligand stabilized copper oxide nanoparticles. J Phys Chem Lett 2(16):2038–2043

    Article  CAS  Google Scholar 

  78. Chang TY, Liang RM, Wu PW, Chen JY, Hsieh YC (2009) Electrochemical reduction of CO2 by Cu2O-catalyzed carbon clothes. Mater Lett 63(12):1001–1003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge a startup fund from the Hong Kong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhua Shao.

Additional information

This article is dedicated to Professor Jose H. Zagal on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Shao, M. Surface structure and composition effects on electrochemical reduction of carbon dioxide. J Solid State Electrochem 20, 861–873 (2016). https://doi.org/10.1007/s10008-015-2884-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2884-x

Keywords

Navigation