Skip to main content
Log in

Core-shell–CuFe2O4/PPy nanocomposite enzyme-free sensor for detection of glucose

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We demonstrated, for the first time, an enzyme-free sensor for detection of glucose based on chemical oxidative polymerization of pyrrole monomers on the surface of CuFe2O4 nanoparticles (NPs). The morphology and surface property of coating phenomenon of CuFe2O4/PPy core-shell nanoparticles were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The electrocatalytic activity of CuFe2O4/PPy toward glucose oxidation was investigated using cyclic voltammetry and chronoamperometry under alkaline conditions. CuFe2O4/PPy core-shells with different shell thickness by varying the amount of pyrrole monomers incorporated were synthesized, and its influence on the morphology and sensing of sensor were also examined. In the amperometric detection of glucose, CuFe2O4/PPy core-shell-modified glassy carbon electrode exhibited limit of detection and sensitivity of 0.1 μM and 637.76 μA mM−1 for low concentrations and 0.47 μM and 176 μA mM−1 for high concentrations of glucose, respectively. It was shown that the presence of pyrrole increased the electronic interaction between NPs and polypyrrole matrices. These excellent performances made CuFe2O4/PPy a potential enzyme-free sensor. The glucose sensor exhibited a linear range response toward glucose in concentration between 20 μM and 5.6 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yoo EH, Lee SY (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10(5):4558–4576

    Article  Google Scholar 

  2. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825

    Article  CAS  Google Scholar 

  3. Wang L, Gao X, Jin L, Wu Q, Chen Z, Lin X (2013) Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sensors Actuators B Chem 176:9–14

    Article  CAS  Google Scholar 

  4. Santhosh P, Manesh KM, Uthayakumar S, Gopalan AI, Lee KP (2009) Hollow spherical nanostructured polydiphenylamine for direct electrochemistry and glucose biosensor. Biosens Bioelectron 24(7):2008–2014

    Article  CAS  Google Scholar 

  5. Zhang Y, Liu Y, Su L, Zhang Z, Huo D, Hou C, Lei Y (2014) CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sensors Actuators B Chem 191:86–93

    Article  CAS  Google Scholar 

  6. Sim H, Kim J-H, Lee S-K, Song M-J, Yoon D-H, Lim D-S, Hong S-I (2012) High-sensitivity non-enzymatic glucose biosensor based on Cu(OH)2 nanoflower electrode covered with boron-doped nanocrystalline diamond layer. Thin Solid Films 520(24):7219–7223

    Article  CAS  Google Scholar 

  7. Huang J, Dong Z, Li Y, Li J, Wang J, Yang H, Li S, Guo S, Jin J, Li R (2013) High performance non-enzymatic glucose biosensor based on copper nanowires–carbon nanotubes hybrid for intracellular glucose study. Sensors Actuators B Chem 182:618–624

    Article  CAS  Google Scholar 

  8. Qiu H, Huang X (2010) Effects of Pt decoration on the electrocatalytic activity of nanoporous gold electrode toward glucose and its potential application for constructing a nonenzymatic glucose sensor. J Electroanal Chem 643(1–2):39–45

    Article  CAS  Google Scholar 

  9. Li Y, Fu J, Chen R, Huang M, Gao B, Huo K, Wang L, Chu PK (2014) Core–shell TiC/C nanofiber arrays decorated with copper nanoparticles for high performance non-enzymatic glucose sensing. Sensors Actuators B Chem 192:474–479

    Article  CAS  Google Scholar 

  10. Shi W, Ma Z (2010) Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix. Biosens Bioelectron 26(3):1098–1103

    Article  CAS  Google Scholar 

  11. Gómez-Hens A, Fernández-Romero JM, Aguilar-Caballos MP (2008) Nanostructures as analytical tools in bioassays. TrAC Trends Anal Chem 27(5):394–406

    Article  Google Scholar 

  12. Zhao G, Xu J-J, Chen H-Y (2006) Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin. Electrochem Commun 8(1):148–154

    Article  CAS  Google Scholar 

  13. Katz E, Weizmann Y, Willner I (2005) Magnetoswitchable reactions of DNA monolayers on electrodes: gating the processes by hydrophobic magnetic nanoparticles. J Am Chem Soc 127(25):9191–9200

    Article  CAS  Google Scholar 

  14. Cheng G, Zhao J, Tu Y, He P, Fang Y (2005) A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Anal Chim Acta 533(1):11–16

    Article  CAS  Google Scholar 

  15. Kaushik A, Solanki PR, Ansari AA, Ahmad S, Malhotra BD (2008) Chitosan–iron oxide nanobiocomposite based immunosensor for ochratoxin-A. Electrochem Commun 10(9):1364–1368

    Article  CAS  Google Scholar 

  16. Singh R, Verma R, Kaushik A, Sumana G, Sood S, Gupta RK, Malhotra BD (2011) Chitosan-iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae detection causing sexually transmitted disease. Biosens Bioelectron 26(6):2967–2974

    Article  CAS  Google Scholar 

  17. Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82(2):269–280

    Article  CAS  Google Scholar 

  18. Šafařík I, Šafaříková M (2002) Magnetic nanoparticles and biosciences. Springer, Vienna

    Google Scholar 

  19. Luo L, Li Q, Xu Y, Ding Y, Wang X, Deng D, Xu Y (2010) Amperometric glucose biosensor based on NiFe2O4 nanoparticles and chitosan. Sensors Actuators B Chem 145(1):293–298

    Article  CAS  Google Scholar 

  20. Pita M, Abad JM, Vaz-Dominguez C, Briones C, Mateo-Marti E, Martin-Gago JA, Morales Mdel P, Fernandez VM (2008) Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J Colloid Interface Sci 321(2):484–492

    Article  CAS  Google Scholar 

  21. Covaliu CI, Jitaru I, Paraschiv G, Vasile E, Biriş S-Ş, Diamandescu L, Ionita V, Iovu H (2013) Core–shell hybrid nanomaterials based on CoFe2O4 particles coated with PVP or PEG biopolymers for applications in biomedicine. Powder Technol 237:415–426

    Article  CAS  Google Scholar 

  22. Zhang B, Liu B, Tang D, Niessner R, Chen G, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84(12):5392–5399

    Article  CAS  Google Scholar 

  23. Shahnavaz Z, Lorestani F, Alias Y, Woi PM (2014) Polypyrrole–ZnFe2O4 magnetic nano-composite with core–shell structure for glucose sensing. Appl Surf Sci 317:622–629

    Article  CAS  Google Scholar 

  24. Tian SJ, Liu JY, Zhu T, Knoll W (2004) Polyaniline/gold nanoparticle multilayer films: assembly, properties, and biological applications. Chem Mater 16(21):4103–4108

    Article  CAS  Google Scholar 

  25. Xu P, Han X, Wang C, Zhao H, Wang J, Wang X, Zhang B (2008) Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole. J Phys Chem B 112(10):2775–2781

    Article  CAS  Google Scholar 

  26. Li Y, Yi R, Yan A, Deng L, Zhou K, Liu X (2009) Facile synthesis and properties of ZnFe2O4 and ZnFe2O4/polypyrrole core-shell nanoparticles. Solid State Sci 11(8):1319–1324

    Article  CAS  Google Scholar 

  27. Ramanavičius A, Ramanavičienė A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim Acta 51(27):6025–6037

    Article  Google Scholar 

  28. Li X, He G, Han Y, Xue Q, Wu X, Yang S (2012) Magnetic titania-silica composite-polypyrrole core-shell spheres and their high sensitivity toward hydrogen peroxide as electrochemical sensor. J Colloid Interface Sci 387(1):39–46

    Article  CAS  Google Scholar 

  29. Ozcan L, Sahin Y, Turk H (2008) Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate. Biosens Bioelectron 24(4):512–517

    Article  CAS  Google Scholar 

  30. Meng F, Shi W, Sun Y, Zhu X, Wu G, Ruan C, Liu X, Ge D (2013) Nonenzymatic biosensor based on Cu(x)O nanoparticles deposited on polypyrrole nanowires for improving detection range. Biosens Bioelectron 42:141–147

    Article  CAS  Google Scholar 

  31. Zheng T, Lu X, Bian X, Zhang C, Xue Y, Jia X, Wang C (2012) Fabrication of ternary CNT/PPy/KxMnO2 composite nanowires for electrocatalytic applications. Talanta 90:51–56

    Article  CAS  Google Scholar 

  32. Nan A, Turcu R, Bratu I, Leostean C, Chauvet O, Gautron E, Liebscher J (2010) Novel magnetic core-shell Fe3O4 polypyrrole nanoparticles functionalized by peptides or albumin. Arki voc 10:185–198

    Article  Google Scholar 

  33. Liu M, Liu X, Ding C, Wei Z, Zhu Y, Jiang L (2011) Reversible underwater switching between superoleophobicity and superoleophilicity on conducting polymer nanotube arrays. Soft Matter 7(9):4163–4165

    Article  CAS  Google Scholar 

  34. Sekine S, Ido Y, Miyake T, Nagamine K, Nishizawa M (2010) Conducting polymer electrodes printed on hydrogel. J Am Chem Soc 132(38):13174–13175

    Article  CAS  Google Scholar 

  35. Bai Z, Yang L, Guo Y, Zheng Z, Hu C, Xu P (2011) High-efficiency palladium catalysts supported on ppy-modified C60 for formic acid oxidation. Chem Commun 47(6):1752–1754

    Article  CAS  Google Scholar 

  36. Correa-Duarte MA, Sobal N, Liz-Marzán LM, Giersig M (2004) Linear assemblies of silica-coated gold nanoparticles using carbon nanotubes as templates. Adv Mater 16(23–24):2179–2184

    Article  CAS  Google Scholar 

  37. Gomez-Lopera SA, Plaza RC, Delgado AV (2001) Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J Colloid Interface Sci 240(1):40–47

    Article  CAS  Google Scholar 

  38. Ishii F, Noro S (1984) Magnetic microcapsules for in vitro testing as carrier for intravascular administration of anticancer drugs: preparation and physicochemical properties. Chem Pharm Bull 32:7

    Google Scholar 

  39. Liu X, Geng D, Meng H, Shang P, Zhang Z (2008) Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl Phys Lett 92(17):173117–173113

    Article  Google Scholar 

  40. Cui H, Mittal V, Datar M (2006) Comparative experiments on sentiment classification for online product reviews. In: AAAI, pp 1265–1270

  41. Hsu Y-W, Hsu T-K, Sun C-L, Nien Y-T, Pu N-W, Ger M-D (2012) Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochim Acta 82:152–157

    Article  CAS  Google Scholar 

  42. Li C, Su Y, Zhang S, Lv X, Xia H, Wang Y (2010) An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosens Bioelectron 26(2):903–907

    Article  Google Scholar 

  43. Li X, Liu J, Ji X, Jiang J, Ding R, Hu Y, Hu A, Huang X (2010) Ni/Al layered double hydroxide nanosheet film grown directly on Ti substrate and its application for a nonenzymatic glucose sensor. Sensors Actuators B Chem 147(1):241–247

    Article  CAS  Google Scholar 

  44. Qian L, Mao J, Tian X, Yuan H, Xiao D (2013) In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor. Sensors Actuators B Chem 176:952–959

    Article  CAS  Google Scholar 

  45. Bhattacharyya S, Salvetat JP, Fleurier R, Husmann A, Cacciaguerra T, Saboungi ML (2005) One step synthesis of highly crystalline and high coercive cobalt-ferrite nanocrystals. Chem Commun 38:4818–4820

    Article  Google Scholar 

  46. Jing S, Xing S, Yu L, Zhao C (2007) Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles colloid. Mater Lett 61(23):4528–4530

    Article  CAS  Google Scholar 

  47. Lu G, Li C, Shi G (2006) Polypyrrole micro-and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid. Polymer 47(6):1778–1784

    Article  CAS  Google Scholar 

  48. Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M (2007) Polyaniline and polypyrrole: a comparative study of the preparation. Eur Polym J 43(6):2331–2341

    Article  CAS  Google Scholar 

  49. Farrell ST, Breslin CB (2004) Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles. Electrochim Acta 49(25):4497–4503

    Article  CAS  Google Scholar 

  50. Kang X, Mai Z, Zou X, Cai P, Mo J (2007) A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes. Anal Biochem 369(1):71–79

    Article  CAS  Google Scholar 

  51. Krull I, Swartz M (1998) Determining limits of detection and quantitation. LC GC 16(10):922–924

    CAS  Google Scholar 

  52. Kang Q, Yang L, Cai Q (2008) An electro-catalytic biosensor fabricated with Pt–Au nanoparticle-decorated titania nanotube array. Bioelectrochemistry 74(1):62–65

    Article  CAS  Google Scholar 

  53. Pang X, He D, Luo S, Cai Q (2009) An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO<sub> 2</sub> nanotube arrays composite. Sensors Actuators B Chem 137(1):134–138

    Article  Google Scholar 

  54. Umar A, Rahman MM, Al-Hajry A, Hahn YB (2009) Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets. Electrochem Commun 11(2):278–281

    Article  CAS  Google Scholar 

  55. Reitz E, Jia W, Gentile M, Wang Y, Lei Y (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20(22):2482–2486

    Article  CAS  Google Scholar 

  56. Wang X, Hu C, Liu H, Du G, He X, Xi Y (2010) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sensors Actuators B Chem 144(1):220–225

    Article  CAS  Google Scholar 

  57. Batchelor-McAuley C, Du Y, Wildgoose GG, Compton RG (2008) The use of copper (II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide. Sensors Actuators B Chem 135(1):230–235

    Article  CAS  Google Scholar 

  58. Safavi A, Maleki N, Farjami E (2009) Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24(6):1655–1660

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by High Impact Research MoE Grant M.C/625/1/HIR/MoE/SC/04 from the Ministry of Education Malaysia, FRGS FP051-2014A from Ministry of Education, PPP Grant PV124-2012A, and University Malaya Centre for Ionic Liquids (UMCiL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatimah Alias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahnavaz, Z., Lorestani, F., Meng, W.P. et al. Core-shell–CuFe2O4/PPy nanocomposite enzyme-free sensor for detection of glucose. J Solid State Electrochem 19, 1223–1233 (2015). https://doi.org/10.1007/s10008-015-2738-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2738-6

Keywords

Navigation