Skip to main content
Log in

Improved electrochemical performance of spinel-type LiMn1.90Mg0.05Si0.05O4 cathode materials synthesized by a citric acid-assisted sol–gel method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The spinel-type LiMn1.90Mg0.05Si0.05O4 cathode materials were successfully synthesized by a citric acid-assisted sol–gel method. The sintering parameters such as sintering temperature and sintering time were investigated, and the crystal structures, morphologies, and chemical compositions of synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). The results indicate that all the co-doped samples synthesized at different calcination temperatures possess the cubic spinel structure of LiMn2O4 with space group of Fd-3m and the average particle size increases with the extending of sintering time. The electrochemical performance of synthesized samples was studied by galvanostatic charge–discharge tests and electrochemical impedance spectroscopy (EIS). Under the optimum sintering condition, the co-doped sample can deliver the initial discharge capacity of 136.2 mA h g−1 at 0.5 °C in the voltage range of 3.2–4.35 V with good capacity retention of 96.0 % after 100 cycles. When cycling at 55 °C, the optimal co-doped sample displays 91.3 % capacity retention after 20 cycles, compared to 58.6 % for the undoped sample. Most importantly, the addition of equimolar Mg2+ and Si4+ ions significantly enhances the rate performance, especially the capacity recovery performance as the charge–discharge rate restores to 0.2 from 10 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302

    Article  CAS  Google Scholar 

  2. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  Google Scholar 

  3. Park OK, Cho Y, Lee S, Yoo HC, Song HK, Cho J (2011) Who will drive electric vehicles, olivine or spinel? Energ Environ Sci 4:1621–1633

    Article  CAS  Google Scholar 

  4. Xi LJ, Wang H, Lu ZG, Yang SL, Ma RG, Deng JQ (2012) Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries. J Power Sources 198:251–257

    Article  CAS  Google Scholar 

  5. Ding YL, Xie J, Cao GS, Zhu TJ, Yu HM, Zhao XB (2011) Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv Funct Mater 21:348–355

    Article  CAS  Google Scholar 

  6. Hirayama M, Ido H, Kim KS, Cho W, Tamura K, Mizuki J, Kanno R (2010) Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. J Am Chem Soc 132:15268–15276

    Article  CAS  Google Scholar 

  7. Yamada A, Tanaka M, Tanaka K, Sekai K (1999) Jahn–Teller instability in spinel Li–Mn–O. J Power Sources 81–82:73–78

    Article  Google Scholar 

  8. Jang D, Shin Y, Oh S (1996) Dissolution of spinel oxides and capacity losses in 4 V Li/Li x Mn2O4 Cells. J Electrochem Soc 143:2204–2211

    Article  CAS  Google Scholar 

  9. Kim KW, Lee SW, Han KS, Chung HJ, Woo SI (2003) Characterization of Al-doped spinel LiMn2O4 thin film cathode electrodes prepared by liquid source misted chemical deposition (LSMCD) technique. Electrochim Acta 48:4223–4231

    Article  CAS  Google Scholar 

  10. Capsonia D, Binia M, Chiodellia G, Massarottia V, Mozzatib MC, Azzoni CB (2003) Structural transition in Mg-doped LiMn2O4: a comparison with other M-doped Li–Mn spinels. Solid State Commun 125:179–183

    Article  Google Scholar 

  11. Sulochana A, Thirunakaran R, Sivashanmugam A, Gopukumar S, Yamaki JI (2008) Sol–gel synthesis of 5 V LiCu x Mn2−x O4 as a cathode material for lithium rechargeable batteries. J Electrochem Soc 155:A206–A210

    Article  CAS  Google Scholar 

  12. Wei YJ, Yan LY, Wang CZ, Xu XG, Wu F, Chen G (2004) Effects of Ni doping on [MnO6] octahedron in LiMn2O4. J Phys Chem B 108:18547–18551

    Article  CAS  Google Scholar 

  13. Ryu WH, Eom JY, Yin RZ, Han DW, Kim WK, Kwon HS (2011) Synergistic effects of various morphologies and Al doping of spinel LiMn2O4 nanostructures on the electrochemical performance of lithium-rechargeable batteries. J Mater Chem 21:15337–15342

    Article  CAS  Google Scholar 

  14. Mandal S, Rojas RM, Amarilla JM, Calle P, Kosova NV, Anufrienko VF, Rojo JM (2002) High temperature Co-doped LiMn2O4-based spinels. Structural, electrical, and electrochemical characterization. Chem Mater 14:1598–141605

    Article  CAS  Google Scholar 

  15. Thirunakaran R, Kim KT, Kang YM, Lee JY (2005) Cr3+ modified LiMn2O4 spinel intercalation cathodes through oxalic acid assisted sol–gel method for lithium rechargeable batteries. Mater Res Bull 40:177–186

    Article  CAS  Google Scholar 

  16. Shigemura H, Sakaebe H, Kageyama H, Kobayashi H, West AR, Kanno R, Tabuchi M (2001) Structure and electrochemical properties of LiFe x Mn2-x O4 (0 ≤ x ≤ 0.5) spinel as 5 V electrode material for lithium batteries. J Electrochem Soc 148:A730–A736

    Article  CAS  Google Scholar 

  17. Arumugam D, Kalaignan GP, Manisankar P (2008) Development of structural stability and the electrochemical performances of La substituted spinel LiMn2O4 cathode materials for rechargeable lithium-ion batteries. Solid State Ion 179:580–586

    Article  CAS  Google Scholar 

  18. Wang C, Liu XQ, Liu HJ, Xiang XC, Zhang Z (2012) Synthesis and electrochemical performances of spinel LiMn2-x In x O4 (x = 0, 0.01, 0.02, 0.05). Chin J Inorg Chem 28:1835–1842

    CAS  Google Scholar 

  19. Xiang MW, Su CW, Feng LL, Yuan ML, Guo JM (2014) Rapid synthesis of high-cycling performance LiMg x Mn2-x O4(x ≤ 0.20) cathode materials by a low-temperature solid-state combustion method. Electrochim Acta 125:524–529

    Article  CAS  Google Scholar 

  20. Song GM, Li WJ, Zhou Y (2004) Synthesis of Mg-doped LiMn2O4 powders for lithium-ion batteries by rotary heating. Mater Chem Phys 87:162–167

    Article  CAS  Google Scholar 

  21. Jeong IS, Kim JU, Gu HB (2001) Electrochemical properties of LiMg y Mn2−y O4 spinel phases for rechargeable lithium batteries. J Power Sources 102:55–59

    Article  CAS  Google Scholar 

  22. Singh P, Sil A, Nath M, Ray S (2010) Synthesis and characterization of Li[Mn2−x Mg x ]O4 (x = 0.0–0.3) prepared by sol–gel synthesis. Ceram Silikáty 54:38–46

    CAS  Google Scholar 

  23. Xiong LL, Xu YL, Zhang C, Zhang ZW, Li JB (2011) Electrochemical properties of tetravalent Ti-doped spinel LiMn2O4. J Solid State Electrochem 15:1263–1269

    Article  CAS  Google Scholar 

  24. Iturrondobeitia A, Goñi A, Palomares V, Gil de Muro I, Lezama L, Rojo T (2012) Effect of doping LiMn2O4 spinel with a tetravalent species such as Si (IV) versus with a trivalent species such as Ga (III). Electrochemical, magnetic and ESR study. J Power Sources 216:482–488

    Article  CAS  Google Scholar 

  25. Xiong LL, Xu YL, Tao T (2013) Synthesis and electrochemical characterization of Ge4+, Sn4+ doped spinel LiMn2O4. Acta Phys-Chim Sin 29:763–769

    CAS  Google Scholar 

  26. Iturrondobeitia A, Goñi A, Lezama L, Kim CJ, Doeff M, Cabana J, Rojo T (2013) Effect of Si (IV) substitution on electrochemical, magnetic and spectroscopic performance of nanosized LiMn2-x Si x O4. J Mater Chem A 1:10857–10862

    Article  CAS  Google Scholar 

  27. Xu W, Yuan A, Wang Y (2012) Electrochemical studies of LiCr x Fe x Mn2−2x O4 in an aqueous electrolyte. J Solid State Electrochem 16:429–434

    Article  CAS  Google Scholar 

  28. Mohan P, Ranjith B, Paruthimal Kalaignan G (2014) Structure and electrochemical performances of co-substituted LiSm x La0.2−x Mn1.80O4 cathode materials for rechargeable lithium-ion batteries. J Solid State Electrochem 18:2183–2192

    Article  CAS  Google Scholar 

  29. Thirunakaran R, Ravikumar R, Gopukumar S, Sivashanmugam A (2013) Electrochemical evaluation of dual-doped LiMn2O4 spinels synthesized via co-precipitation method as cathode material for lithium rechargeable batteries. J Alloy Compd 556:266–273

    Article  CAS  Google Scholar 

  30. Pistois G, Zane D, Zhang Y (1995) Some aspects of LiMn2O4 electrochemistry in the 4 volt range. J Electrochem Soc 142:2551–2557

    Article  Google Scholar 

  31. Jayapal S, Mariappan R, Sundar S, Piraman S (2014) Electrochemical behavior of LiMn2−XY Ti X Fe Y O4 as cathode material for lithium ion batteries. J Electroanal Chem 720–721:58–63

    Article  Google Scholar 

  32. Shibeshi PT, Veeraiah V (2014) Structural, electrical and electrochemical characterization of LiLa0.01Cr0.13Mn1.86O4 cathode material for lithium-ion battery. J Phys Chem Solids 75:1075–1079

    Article  CAS  Google Scholar 

  33. Zhang H, Xu YL, Liu D, Zhang XS, Zhao CJ (2014) Structure and performance of dual-doped LiMn2O4 cathode materials prepared via microwave synthesis method. Electrochim Acta 125:225–231

    Article  CAS  Google Scholar 

  34. Xiong LL, Xu YL, Tao T, Goodenough JB (2012) Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. J Power Sources 199:214–219

    Article  CAS  Google Scholar 

  35. Capsoni D, Bini M, Chiodelli G, Mustarelli P, Massarotti V, Azzoni CB, Mozzati MC, Linati L (2002) Inhibition of Jahn–Teller cooperative distortion in LiMn2O4 spinel by Ga3+ doping. J Phys Chem B 106:7432–7438

    Article  CAS  Google Scholar 

  36. Lee YS, Kumada N, Yoshio M (2001) Synthesis and characterization of lithium aluminum-doped spinel (LiAl x Mn2−x O4) for lithium secondary battery. J Power Sources 96:376–384

    Article  CAS  Google Scholar 

  37. Zhan D, Zhang QG, Hu XH, Zhu GZ, Peng TY (2013) Single-crystalline LiMn2O4 nanorods as cathode material with enhanced performance for Li-ion battery synthesized via template-engaged reaction. Solid State Ion 239:8–14

    Article  CAS  Google Scholar 

  38. Ting-Kuo FG, Cho YD, PremKumar T (2004) A TEA-starch combustion method for the synthesis of fine-particulate LiMn2O4. Mater Chem Phys 87:275–284

    Article  Google Scholar 

  39. Peng ZD, Jiang QL, Du K, Wang WG, Hu GR, Liu YX (2010) Effect of Cr-sources on performance of Li1.05Cr0.04Mn1.96O4 cathode materials prepared by slurry spray drying method. J Alloy Compd 493:640–644

    Article  CAS  Google Scholar 

  40. Tian JK, Wan FC, Battaglia VS, Zhang HL (2014) Synthesis and electrochemical performance of nanosized multiple-doped LiMn2O4 prepared at low temperature for Liion battery. Int J Electrochem Soc 9:931–942

    CAS  Google Scholar 

  41. He L, Zhang SC, Wei X, Du ZJ, Liu GR, Xing YL (2012) Synthesis and electrochemical performance of spinel-type LiMn2O4 using γ-MnOOH rods as self-template for lithium ion battery. J Power Sources 220:228–235

    Article  CAS  Google Scholar 

  42. Wang FX, Xiao SY, Zhu YS, Chang Z, Hu CL, Wu YP, Holze R (2014) Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors. J Power Sources 246:19–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 21071026) and the Outstanding Talent Introduction Project of the University of Electronic Science and Technology of China (No. 08JC00303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingquan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Liu, X., Cheng, C. et al. Improved electrochemical performance of spinel-type LiMn1.90Mg0.05Si0.05O4 cathode materials synthesized by a citric acid-assisted sol–gel method. J Solid State Electrochem 19, 1015–1026 (2015). https://doi.org/10.1007/s10008-014-2708-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2708-4

Keywords

Navigation