Skip to main content

Advertisement

Log in

Enhanced photovoltaic and photoelectrocatalytic properties by free-standing TiO2 nanotubes via anodization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work employs a simple anodization to develop free-standing TiO2 nanotubes with controllable sizes via a self-detaching technique, and the resulting close-bottom-up free-standing TiO2 nanotubes are faced Degussa P25 particle film, precoated on a fluorine-doped SnO2 conductive glass, to fabricate a TiO2 composite. The resulting composites, whose sizes can be controlled by modulating the reanodizing time, were used as the photoanode films and oxidative catalyst to investigate their corresponding photoelectrochemical properties. Compared with P25 particle film, these resulting composites reveal the improved photocatalytic and photovoltaic performance, which results from the effective transfer of photo-generated charges by these characteristic nanotubular arrays. The composite, based on the free-standing TiO2 nanotubes (~10.88 μm), indicates the highest photovoltaic conversion efficiency (7.64 %) under a standard AM 1.5 solar simulator and degradation rate (95.20 %) under the UV irradiation of 75 min, and these results are probably attributed by the positive synergistic effect of the transport of photo-generated charges, the diffusion path of reactants, and the penetration length of incident light into films in comparison to other free-standing TiO2 nanotubes. In addition, the higher photoelectrocatalytic activity is acquired by electrochemically assisted photocatalytic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331–3334

    Article  CAS  Google Scholar 

  2. Su ZX, Zhou WZ (2011) J Mater Chem 21:8955–8970

    Article  CAS  Google Scholar 

  3. Li LL, Tsai CY, Wu HP, Chen CC, Diau EWG (2010) J Mater Chem 20:2753–2819

    Article  CAS  Google Scholar 

  4. Sreekantan S, Saharudin KA, Lockman Z, Tzu TW (2010) Nanotechnology 21:365603

    Article  Google Scholar 

  5. Gui Q, Yu D, Zhang S, Xiao H, Yang C, Song Y, Zhu X (2014) J Solid State Electron 18:141–148

    Article  CAS  Google Scholar 

  6. Huang JR, Tan X, Yu T, Zhao L, Xue S (2012) Rsc Adv 2:12657–12660

    Article  CAS  Google Scholar 

  7. Xie ZB, Blackwood DJ (2010) Electrochim Acta 56:905–912

    Article  CAS  Google Scholar 

  8. Yang Y, Lee K, Kado Y, Schmuki P (2012) Electrochem Commun 17:56–59

    Article  CAS  Google Scholar 

  9. In SI, Nielsen MG, Vesborg PCK, Hou Y, Abrams BL, Henriksen TR, Hansen O, Chorkendorff I (2011) Chem Commun 47:2613–2615

    Article  CAS  Google Scholar 

  10. Huang JR, Tan X, Yu T, Zhao L (2014) Electrochim Acta 146:278–287

    Article  CAS  Google Scholar 

  11. Huang JR, Tan X, Yu T, Zhao L, Xue S, Hu WL (2014) J Mater Chem A 2:9975–9981

    Article  CAS  Google Scholar 

  12. Agarwala S, Ho GW (2012) J Solid State Chem 189:101–107

    Article  CAS  Google Scholar 

  13. Allam NK, Shankar K, Grimes CA (2008) J Mater Chem 18:2341–2348

    Article  CAS  Google Scholar 

  14. Feng C, Xu G, Liu H, Lv J, Zheng Z, Wu Y (2014) J Solid State Electron 18:163–171

    Article  CAS  Google Scholar 

  15. Song YY, Schmidt-Stein F, Bauer S, Schmuki P (2009) J Am Chem Soc 131:4230–4232

    Article  CAS  Google Scholar 

  16. Dumitriu C, Pirvu C, Demetrescu I (2013) J Electrochem Soc 160:G55–G60

    Article  CAS  Google Scholar 

  17. Lamberti A, Sacco A, Bianco S, Manfredi D, Cappelluti F, Hernandez S, Quaglio M, Pirri CF (2013) Phys Chem Chem Phys 15:2596–2602

    Article  CAS  Google Scholar 

  18. Hsiao PT, Liou YJ, Teng HS (2011) J Phys Chem C 115:15018–15024

    Article  CAS  Google Scholar 

  19. Chen QW, Xu DS (2009) J Phys Chem C 113:6310–6314

    Article  CAS  Google Scholar 

  20. Lin CJ, Yu WY, Chien SH (2010) J Mater Chem 20:1073–1077

    Article  CAS  Google Scholar 

  21. Chen QQ, Xu DS, Wu ZY, Liu ZF (2008) Nanotechnology 19:365708

    Article  Google Scholar 

  22. Meng X, Lee TY, Chen H, Shin DW, Kwon KW, Kwon SJ, Yoo JB (2010) J Nanosci Nanotechnol 10:4259–4265

    Article  CAS  Google Scholar 

  23. Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA (2007) J Phys Chem C 111:14992–14997

    Article  CAS  Google Scholar 

  24. Paulose M, Peng LL, Popat KC, Varghese OK, Latempa TA, Bao TA, Desai TA, Grimes CA (2008) J Memb Sci 319:199–205

    Article  CAS  Google Scholar 

  25. Ng JW, Zhang XW, Zhang T, Pan JH, Du JHA, Sun DD (2010) J Chem Technol Biotechnol 85:1061–1066

    Article  CAS  Google Scholar 

  26. Singh S, Festin M, Barden WRT, Xi L, Francis JT, Kruse P (2008) ACS Nano 2:2363–2373

    Article  CAS  Google Scholar 

  27. Jo Y, Jung I, Lee I, Choi J, Tak Y (2010) Electrochem Commun 12:616–619

    Article  CAS  Google Scholar 

  28. Wang DA, Liu LF (2010) Chem Mater 22:6656–6664

    Article  CAS  Google Scholar 

  29. He XL, Cai YY, Zhang HM, Liang CH (2011) J Mater Chem 21:475–480

    Article  CAS  Google Scholar 

  30. Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Nano Lett 7:1286–1289

    Article  CAS  Google Scholar 

  31. Dubey M, Shrestha M, Zhong Y, Galipeau D, He H (2011) Nanotechnology 22:285201

    Article  Google Scholar 

  32. Varghese OK, Paulose M, Grimes CA (2009) Nat Nanotechnol 4:592–597

    Article  CAS  Google Scholar 

  33. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  34. Park JH, Lee TW, Kang MG (2008) Chem Commun 25:2867–2869

    Article  Google Scholar 

  35. Li LL, Chen YJ, Wu HP, Wang NS, Diau EWG (2011) Energ Environ Sci 4:3420–3425

    Article  CAS  Google Scholar 

  36. Qiu JJ, Zhuge FW, Lou K, Li XM, Gao XD, Gan XY, Yu WD, Kim HK, Hwang YH (2011) J Mater Chem 21:5062–5068

    Article  CAS  Google Scholar 

  37. Liao J, Lin S, Pan N, Li S, Cao X, Cao Y (2012) Mater Charact 66:24–29

    Article  CAS  Google Scholar 

  38. Lin CJ, Yu WY, Lua YT, Chien SH (2008) Chem Commun 45:6031–6033

    Article  Google Scholar 

  39. Lin CJ, Yu YH, Liou YH (2009) Appl Catal B-Environ 93:119–125

    Article  CAS  Google Scholar 

  40. Lin J, Chen JF, Chen XF (2010) Electrochem Commun 12:1062–1065

    Article  CAS  Google Scholar 

  41. Kant K, Losic D (2009) Phys Status Solidi-R 3:139–141

    Article  CAS  Google Scholar 

  42. Lei BX, Liao JY, Zhang R, Wang J, Su CY, Kuang DB (2010) J Phys Chem C 114:15228–15233

    Article  CAS  Google Scholar 

  43. Gao X, Chen J, Yuan C (2013) J Power Sources 240:503–509

    Article  CAS  Google Scholar 

  44. Ito S, Murakami TN, Comte P, Liska P, Grätzel C, Nazeeruddin MK, Grätzel M (2008) Thin Solid Films 516:4613–4619

    Article  CAS  Google Scholar 

  45. Liu F, Zhao ZJ, Qiu LM, Zhao LZ (2009) AnanlysisTest Technol Instrum (In Chinese) 15(1):1–17

    CAS  Google Scholar 

  46. Wang D, Xiao L, Luo Q, Li X, An J, Duan Y (2011) J Hazard Mater 192:150–159

    Article  CAS  Google Scholar 

  47. Hamal DB, Klabunde KJ (2011) J Phys Chem C 115:17359–17367

    Article  CAS  Google Scholar 

  48. Kuang DB, Ito S, Wenger B, Klein C, Moser JE, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2006) J Am Chem Soc 128:4146–4154

    Article  CAS  Google Scholar 

  49. Chang HT, Wu NM, Zhu FQ (2000) Water Res 34:407–416

    Article  Google Scholar 

  50. Xiong L, Yang Y, Mai J, Sun W, Zhang C, Wei D, Chen Q, Ni J (2010) Chem Eng J 156:313–320

    Article  CAS  Google Scholar 

  51. Liu ZY, Zhang XT, Nishimoto S, Murakami T, Fujishima A (2008) Environ Sci Technol 42:8547–8551

    Article  CAS  Google Scholar 

  52. Zhang XM, Huo KF, Hu LS, Wu ZW, Chu PK (2010) J Am Ceram Soc 93:2771–2778

    Article  CAS  Google Scholar 

  53. Liang HC, Li XZ (2009) J Hazard Mater 162:1415–1422

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 program, No. 2012CB720100, No. 2014CB239300), National Natural Science Foundation of China (No. 21406164, 21466035), and Science Foundation of Ministry of Education of China (No. 20130032120019, No. 20110032110037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Tan, X., Yu, T. et al. Enhanced photovoltaic and photoelectrocatalytic properties by free-standing TiO2 nanotubes via anodization. J Solid State Electrochem 19, 1151–1160 (2015). https://doi.org/10.1007/s10008-014-2699-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2699-1

Keywords

Navigation