Skip to main content
Log in

Redox behaviour of some asymmetrically substituted viologens and an alkyl bridged bis-viologen in non-aqueous solvents: a voltammetric and spectroscopic investigation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A compound library of seven asymmetrically substituted viologens and, additionally, a bis-viologen is investigated by voltammetric and EPR- and UV–Vis spectroelectrochemical techniques as well as diffusion-ordered nuclear magnetic resonance (NMR) spectroscopy. In acetonitrile-based electrolytes, all compounds show a stepwise two electron chemically and electrochemically reversible reduction of the viologen moieties. In the case of the bis-viologen, peak potential difference data indicate a weak difference in the formal potentials of the two non-conjugated redox systems. Diffusion coefficients from cyclic voltammetric and pulse gradient spin echo NMR experiments are comparable for all mono-viologens while the size and saturation of the side chain in the mono-viologen compounds has only a minor influence on this transport property. The semi-quinone forms of the viologens are highly stable with respect to disproportionation and they are EPR active. For the mono-viologens, coupling constants for all hydrogen and nitrogen nuclei interacting with the unpaired electron were determined. The bis-viologen forms a bis(radical cation) as well as an EPR-silent (but UV-detectable) π-dimer. Furthermore, the effect of weakly coordinating anions on the different redox states is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Janisch J, Klinkhammer R, Ruff A, Schäfer J, Speiser B, Wolff C (2013) Electrochim Acta 110:608–618

    Article  CAS  Google Scholar 

  2. Bird CL, Kuhn AT (1981) Chem Soc Rev 10:49–82

    Article  CAS  Google Scholar 

  3. Michaelis L, Hill ES (1933) J Gen Physiol 16:859–873

    Article  CAS  Google Scholar 

  4. Sarkar A, Mukherjee T, Kapoor S (2010) Res Chem Intermed 36:173–179

    Article  CAS  Google Scholar 

  5. Kang Y-W, Kang C, Hong J-S, Yun S-E (2001) Biotechnol Lett 23:599–604

    Article  CAS  Google Scholar 

  6. Suye S-i, Aramoto Y, Nakamura M, Tabata I, Sakakibara M (2002) Enzyme Microb Technol 30:139–144

    Article  CAS  Google Scholar 

  7. Kim S, Yun S-E, Kang C (1999) J Electroanal Chem 465:153–159

    Article  CAS  Google Scholar 

  8. DiCosimo R, Wong C-H, Daniels L, Whitesides GM (1981) J Org Chem 46:4622–4623

    Article  CAS  Google Scholar 

  9. Strehlitz B, Gründig B, Vorlop K-D, Bartholmes P, Kotte H, Stottmeister U (1994) Fresenius J Anal Chem 349:676–678

    Article  CAS  Google Scholar 

  10. Plumeré N, Henig J, Campbell WH (2012) Anal Chem 84:2141–2146

    Article  Google Scholar 

  11. Heinen S, Walder L (2000) Angew Chem 112:811–814; Angew Chem Int Ed 39:806–809

  12. Heinen S, Meyer W, Walder L (2001) J Electroanal Chem 498:34–43

    Article  CAS  Google Scholar 

  13. Baker WS, Lemon BI III, Crooks RM (2001) J Phys Chem B 105:8885–8894

    Article  CAS  Google Scholar 

  14. Kathiresan M, Walder L, Ye F, Reuter H (2010) Tetrahedron Lett 51:2188–2192

    Article  CAS  Google Scholar 

  15. Bu H-B, Götz G, Reinold E, Vogt A, Schmid S, Segura JL, Blanco R, Gómez R, Bäuerle P (2011) Tetrahedron 67:1114–1125

    Article  CAS  Google Scholar 

  16. Segura JL, Gómez R, Blanco R, Reinold E, Bäuerle P (2006) Chem Mater 18:2834–2847

    Article  CAS  Google Scholar 

  17. Bidan G, Deronzier A, Moutet J-C (1984) J Chem Soc Chem Commun:1185–1186

  18. Ruff A, Schuler P, Speiser B (2013) J Solid State Electrochem 17:79–97. doi:10.1007/s10008-012-1834-0

    Article  CAS  Google Scholar 

  19. Passon M, Ruff A, Schuler P, Speiser B, Dreiling I (2014) ChemElectroChem 1:263–280

    Article  Google Scholar 

  20. Álvaro M, Bizzoca G, Ferrer B, García H, de Miguel M, Teruel L (2010) ChemPhysChem 11:3456–3464

    Article  Google Scholar 

  21. Nikitin K, Fitzmaurice D (2005) J Am Chem Soc 127:8067–8076

    Article  CAS  Google Scholar 

  22. Martín R, Heydorn PC, Alvaro M, García H (2009) Chem Mater 21:4505–4514

    Article  Google Scholar 

  23. Andrieux CP, Hapiot P, Savéant JM (1985) J Electroanal Chem 189:121–133

    Article  CAS  Google Scholar 

  24. Makarov SV, Kudrik EV, van Eldik R, Naidenko EV (2002) J Chem Soc Dalton Trans:4074–4076

  25. Hünig S, Schenk W (1979) Liebigs Ann Chem:1523–1533

  26. Stejskal EO, Tanner JE (1965) J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  27. Johnson CS Jr (1999) Prog Nucl Magn Reson Spectrosc 34:203–256

    Article  CAS  Google Scholar 

  28. Cohen Y, Avram L, Frish L (2005). Angew Chem 117:524–560; Angew Chem Int Ed 44:520–554

    Article  CAS  Google Scholar 

  29. Goldsmith JI, Takada K, Abruña HD (2002) J Phys Chem B 106:8504–8513

    Article  CAS  Google Scholar 

  30. Sun H, Chen W, Kaifer AE (2006) Organometallics 25:1828–1830

    Article  CAS  Google Scholar 

  31. Moon K, Kaifer AE (2004) J Am Chem Soc 126:15016–15017

    Article  CAS  Google Scholar 

  32. Philip I, Kaifer AE (2005) J Org Chem 70:1558–1564

    Article  CAS  Google Scholar 

  33. Podkoscielny D, Philip I, Gibb CLD, Gibb BC, Kaifer AE (2008) Chem Eur J 14:4704–4710

    Article  CAS  Google Scholar 

  34. van Dam HT, Ponjeé JJ (1974) J Electrochem Soc 121:1555–1558

    Article  CAS  Google Scholar 

  35. Jasinski RJ (1977) J Electrochem Soc 124:637–641

    Article  CAS  Google Scholar 

  36. Monk PMS, Hodgkinson NM (1998) Electrochim Acta 43:245–255

    Article  CAS  Google Scholar 

  37. Geiger WE, Barrière F (2010) Acc Chem Res 43:1030–1039

    Article  CAS  Google Scholar 

  38. Krossing I, Bihlmeier A, Raabe I, Trapp N (2003) Angew Chem 115:1569–1572; Angew Chem Int Ed 42:1531–1534

    Article  CAS  Google Scholar 

  39. Raabe I, Himmel D, Müller S, Trapp N, Kaupp M, Krossing I (2008) Dalton Trans:946–956

  40. Stewart MP, Paradee LM, Raabe I, Trapp N, Slattery JS, Krossing I, Geiger WE (2010) J Fluorine Chem 131:1091–1095

    Article  CAS  Google Scholar 

  41. Geiger WE (2014) In: Bard AJ, Zoski CG (eds) Electroanal Chem, vol 25, chap 4. CRC Press, Boca Raton, pp 179–222

  42. Nokami T, Somam R, Yamamoto Y, Kamei T, Itami K, Yoshida J-i (2007) Beilstein J Org Chem 3(7). doi:10.1186/1860-5397-3-7

  43. Barrière F, Geiger WE (2006) J Am Chem Soc 128:3980–3989

    Article  Google Scholar 

  44. Gericke HJ, Barnard NI, Erasmus E, Swarts JC, Cook MJ, Aquino MAS (2010) Inorg Chim Acta 363:2222–2232

    Article  CAS  Google Scholar 

  45. Raabe I, Wagner K, Guttsche K, Wang M, Grätzel M, Santiso-Quiñones G, Krossing I (2009) Chem Eur J 15:1966–1976

    Article  CAS  Google Scholar 

  46. Dümmling S, Eichhorn E, Schneider S, Speiser B, Würde M (1996) Curr Sep 15:53–56

    Google Scholar 

  47. Kerssebaum R, Salnikov G (2002) DOSY and Diffusion by NMR, A Tutorial for TopSpin 20, Version 200 Bruker Biospin, Rheinstetten, Germany

  48. Price WS (1998) Concepts Magn Reson 10:197–237

    Article  CAS  Google Scholar 

  49. Janisch J, Ruff A, Speiser B, Wolff C, Zigelli J, Benthin S, Feldmann V, Mayer HA (2011) J Solid State Electrochem 15:2083–2094

    Article  CAS  Google Scholar 

  50. Gollas B, Krauß B, Speiser B, Stahl H (1994) Curr Sep 13:42–44

    CAS  Google Scholar 

  51. Gritzner G, Kuͦta J (1984) Pure Appl Chem 56:461–466

    Article  Google Scholar 

  52. Lu T, Cotton TM, Hurst JK, Thompson DHP (1988) J Phys Chem 92:6978–6985

    Article  CAS  Google Scholar 

  53. Gomez M, Li J, Kaifer AE (1991) Langmuir 7:1797–1806

    Article  CAS  Google Scholar 

  54. Lee C, Sung YW, Park JW (1997) J Electroanal Chem 431:133–139

    Article  CAS  Google Scholar 

  55. Furue M, Nozakura S-i (1980) Chem Lett:821–824

  56. Furue M, Nozakura S-i (1982) Bull Chem Soc Jpn 55:513–516

    Article  CAS  Google Scholar 

  57. Deronzier A, Galland B, Vieira M (1983) Electrochim Acta 28:805–811

    Article  CAS  Google Scholar 

  58. Miyama H, Nosaka Y, Kobayashi T, Kuwabara A (1983) J Polym Sci B Polym Lett Ed 21:945–949

    Article  CAS  Google Scholar 

  59. Hirota J, Takeno T, Okura I (1994) J Photochem Photobiol A: Chem 77:29–35

    Article  CAS  Google Scholar 

  60. Pepitone MF, Jernigan GG, Melinger JS, Kim O-K (2007) Org Lett 9:801–804

    Article  CAS  Google Scholar 

  61. Nicholson RS, Shain I (1964) Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  62. Eggins BR (1972) J Chem Soc Chem Commun:427

  63. Parker VD (1973) Electrochim Acta 18:519–524

    Article  CAS  Google Scholar 

  64. Valencia DP, González FJ (2011) Electrochem Commun 13:129–132

    Article  CAS  Google Scholar 

  65. Nolan JE, Plambeck JA (1990) J Electroanal Chem 294:1–20

    Article  CAS  Google Scholar 

  66. Gaudiello JG, Ghosh PK, Bard AJ (1985) J Am Chem Soc 107:3027–3032

    Article  CAS  Google Scholar 

  67. Webster RD, Dryfe RAW, Eklund JC, Lee C-W, Compton RG (1996) J Electranal Chem 402:167–174

    Article  Google Scholar 

  68. Johnson CS Jr, Gutowsky HS (1963) J Chem Phys 39:58–62

    Article  CAS  Google Scholar 

  69. Bard AJ, Faulkner LR (2001) Electrochemical methods—fundamentals and applications, 2nd edn. Wiley, New York, p 241

    Google Scholar 

  70. Ammar F, Savéant JM (1973) J Electroanal Chem 47:115–125

    Article  CAS  Google Scholar 

  71. Ammar F, Savéant JM (1973) J Electroanal Chem 47:215–221

    Article  CAS  Google Scholar 

  72. Flanagan JB, Margel S, Bard AJ, Anson FC (1978) J Am Chem Soc 100:4248–4253

    Article  CAS  Google Scholar 

  73. Nafady A, Costa PJ, Calhorda MJ, Geiger WE (2006) J Am Chem Soc 128:16587–16599

    Article  CAS  Google Scholar 

  74. Nafady A, Chin TT, Geiger WE (2006) Organometallics 25:1654–1663

    Article  CAS  Google Scholar 

  75. Donoli A, Bisello A, Cardena R, Benetollo F, Ceccon A, Santi S (2011) Organometallics 30:1116–1121

    Article  CAS  Google Scholar 

  76. Xu D, Wang W, Gesua D, Kaifer AE (2008) Org Lett 10:4517–4520

    Article  CAS  Google Scholar 

  77. Adams CJ, da Costa RC, Edge R, Evans DH, Hood MF (2010) J Org Chem 75:1168–1178

    Article  CAS  Google Scholar 

  78. Kannappan R, Bucher C, Saint-Aman E, Moutet J-C, Milet A, Oltean M, Métay E, Pellet-Rostaing S, Lemaire M, Chaix C (2010) New J Chem 34:1373–1386

    Article  CAS  Google Scholar 

  79. Iordache A, Retegan M, Thomas F, Royal G, Saint-Aman E, Bucher C (2012) Chem Eur J 18:7648–7653

    Article  CAS  Google Scholar 

  80. Iordache A, Oltean M, Milet A, Thomas F, Baptiste B, Saint-Aman E, Bucher C (2012) J Am Chem Soc 134:2653–2671

    Article  CAS  Google Scholar 

  81. Coury LA Jr, Oliver BN, Egekeze JO, Sosnoff CS, Brumfield JC, Buck RP, Murray RW (1990) Anal Chem 62:452–458

    Article  CAS  Google Scholar 

  82. Coury LA Jr, Murray RW, Johnson JL, Rajagopalan KV (1991) J Phys Chem 95:6034–6040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank J. Edrich and P. Finkbeiner for preliminary experiments. The authors also thank the Deutsche Metrohm GmbH & Co. KG Filderstadt, Germany, for providing the UV–Vis spectroelectrochemical setup. AR thanks the Universität Tübingen for an LGFG fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Speiser.

Additional information

Dedicated to the late Lothar Dunsch, a colleague and friend.

Two-electron-transfer redox systems. Part 9. for Part 8, see ref. [1]; the list of authors is ordered alphabetically within the participating institutes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 184 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passon, M., Ruff, A., Schuler, P. et al. Redox behaviour of some asymmetrically substituted viologens and an alkyl bridged bis-viologen in non-aqueous solvents: a voltammetric and spectroscopic investigation. J Solid State Electrochem 19, 85–101 (2015). https://doi.org/10.1007/s10008-014-2629-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2629-2

Keywords

Navigation