Skip to main content
Log in

Voltammetric speciation studies of systems where the species diffusivities differ significantly

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A rigorous and simple analytical solution is reported for the square scheme in single pulse techniques at (hemi)spherical electrodes when the electron transfers are reversible and the coupled chemical reactions are at equilibrium. The solution presented imposes no restriction to the values of the diffusion coefficients of the different species, and then it fully describes the cases where the coupled chemical processes involve significant changes of diffusivity. Simple criteria are discussed to understand and predict the effects of electrode radius, experiment time-scale and chemical thermodynamics on the results obtained in normal pulse voltammetry and derivative voltammetry. Unlike at macroelectrodes and ultramicroelectrodes, the position of the voltammograms (in these and other voltammetric techniques) is time dependent at spherical electrodes of intermediate size when the diffusion coefficients of the species are unequal. An analytical expression for the half-wave potential is given to describe this behaviour and also to assist the quantitative determination of the diffusion coefficients, formal potentials and equilibrium constants with the electrochemical techniques abovementioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  2. Lund H, Hammerich O (2001) Organic electrochemistry, 4th edn. Marcel Dekker, New York

    Google Scholar 

  3. Compton RG, Banks CE (2011) Understanding voltammetry, 2nd edn. Imperial College Press, London

    Book  Google Scholar 

  4. Osella D, Carretta A, Nervi C, Ravera M, Gobetto R (2000) Organometallics 19:2791–2797

    Article  CAS  Google Scholar 

  5. Puy J (1992) Anal Chim Acta 268:261–274

    Article  CAS  Google Scholar 

  6. Crow DR (1983) Electrochim Acta 28:1799–1805

    Article  CAS  Google Scholar 

  7. Crow DR (1986) Talanta 33:553–559

    Article  CAS  Google Scholar 

  8. Doménech A, García-España E, Navarro P, Reviriego F (2000) Talanta 51:625–636

    Article  Google Scholar 

  9. Bianchi A, Doménech A, García-España E, Luis SV (1993) Anal Chem 65:3137–3142

    Article  CAS  Google Scholar 

  10. Molina A, Torralba E, Serna C, Ortuño J (2013) Electrochim Acta 106:244–257

    Article  CAS  Google Scholar 

  11. Guidelli R, Cozzi D (1967) J Phys Chem 71:3027–3034

    Article  CAS  Google Scholar 

  12. Andrieux CP, Hapiot P, Savéant JM (1984) J Electroanal Chem 172:49–65

    Article  CAS  Google Scholar 

  13. Evans DH (1989) J Electroanal Chem 258:451–456

    Article  CAS  Google Scholar 

  14. De Jong HG, Van Leeuwen HP (1987) J Electroanal Chem 234:17–29

    Article  Google Scholar 

  15. Blauch DN, Anson FC (1991) J Electroanal Chem 309:313–318

    Article  CAS  Google Scholar 

  16. Oldham KB (1991) J Electroanal Chem 313:3–16

    Article  CAS  Google Scholar 

  17. González J, Molina A, López-Tenés M, Serna C (2000) J Electrochem Soc 147:3429–3435

    Article  Google Scholar 

  18. Parry EP, Osteryoung RA (1965) Anal Chem 37:1634–1637

    Article  CAS  Google Scholar 

  19. Molina A, González J (1999) Electrochem Commun 1:477–482

    Article  CAS  Google Scholar 

  20. Samec Z (2006) In: Bagotsky V S (ed) Fundamentals of electrochemistry, interfaces between two immiscible electrolyte solutions, 2nd edn. Wiley, New York

  21. Molina A, Serna C, Ortuño JA, Torralba E (2012) Annu Rep Prog Chem Sect C 108:126–176

    Article  CAS  Google Scholar 

  22. Rogers EI, Silvester DS, Poole DL, Aldous L, Hardacre C, Compton RG (2008) J Phys Chem C 112:2729–2735

    Article  CAS  Google Scholar 

  23. Zigah D, Ghilane J, Lagrost C, Hapiot P (2008) J Phys Chem B 112:14952–14958

    Article  CAS  Google Scholar 

  24. Buzzeo MC, Klymenko OV, Wadhawan JD, Hardacre C, Seddon KR, Compton RG (2003) J Phys Chem A 107:8872–8878

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support provided by the Ministerio de Economia y Competitividad (project number CTQ2012-36700, co-funded by the European Regional Development Fund). EL also thanks the funding received from the European Union Seventh Framework Programme-Marie Curie COFUND (FP7/2007-2013) under UMU Incoming Mobility Programme ACTion (U-IMPACT) Grant Agreement 267143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Molina.

Appendix

Appendix

In order to solve the differential equation (14) system, we define two new variables:

$$ {u}_{\mathrm{AT}}=\frac{c_{\mathrm{AT}}r}{c_{\mathrm{AT}}^{*}{r}_0}\kern0.5em ;\kern0.5em {u}_{\mathrm{BT}}=\frac{c_{\mathrm{BT}}r}{c_{\mathrm{AT}}^{*}{r}_0} $$
(47)

so that the differential equation system and the boundary value problem become:

$$ \left\{\begin{array}{l}\frac{\partial {u}_{\mathrm{AT}}}{\partial t}={D}_{\mathrm{eff}}\frac{\partial^2{u}_{\mathrm{AT}}}{\partial {r}^2}\\ {}\frac{\partial {u}_{\mathrm{BT}}}{\partial t}={D}_{\mathrm{eff}}^{\prime}\frac{\partial^2{u}_{\mathrm{BT}}}{\partial {r}^2}\end{array}\right. $$
(48)
$$ \begin{array}{ll}\left.\begin{array}{l}r\ge {r}_0,t=0\hfill \\ {}r\to \infty, t\ge 0\hfill \end{array}\right\}\hfill & {u}_{\mathrm{AT}}=\frac{r}{r_0};\kern0.5em {u}_{\mathrm{BT}}=0\hfill \\ {}\left.r={r}_0,t>0\right\}\hfill & \hfill \end{array} $$
(49)
$$ {D}_{\mathrm{eff}}\left[{\left(\frac{\partial {u}_{\mathrm{AT}}}{\partial r}\right)}_{r={r}_0}-\frac{u_{\mathrm{AT}}\left({r}_0\right)}{r_0}\right]=-{D}_{\mathrm{eff}}^{\prime}\left[{\left(\frac{\partial {u}_{\mathrm{BT}}}{\partial r}\right)}_{r={r}_0}-\frac{u_{\mathrm{BT}}\left({r}_0\right)}{r_0}\right] $$
(50)
$$ {u}_{\mathrm{AT}}\left({r}_0\right)={u}_{\mathrm{BT}}\left({r}_0\right){e}^{\eta^{\prime }} $$
(51)

The above problem will be solved by means of Koutecký’s dimensionless parameter method. With this aim, the following dimensionless variables are defined:

$$ s=\frac{r-{r}_0}{2\sqrt{D_{\mathrm{eff}}t}};\kern0.96em {s}^{\prime }=\frac{r-{r}_0}{2\sqrt{D_{\mathrm{eff}}^{\prime }t}} $$
(52)
$$ \xi =\frac{2\sqrt{D_{\mathrm{eff}}^{\prime }t}}{r_0} $$
(53)

so that introducing them into Eqs. (48)–(51):

$$ \left\{\begin{array}{l}\frac{\partial^2{u}_{\mathrm{AT}}}{\partial {s}^2}+2s\frac{\partial {u}_{\mathrm{AT}}}{\partial s}-2\xi \frac{\partial {u}_{\mathrm{AT}}}{\partial \xi }=0\\ {}\frac{\partial^2{u}_{\mathrm{BT}}}{\partial {s^{\prime}}^2}+2{s}^{\prime}\frac{\partial {u}_{\mathrm{BT}}}{\partial {s}^{\prime }}-2\xi \frac{\partial {u}_{\mathrm{BT}}}{\partial \xi }=0\end{array}\right. $$
(54)
$$ \begin{array}{l}\left.s,{s}^{\prime}\to \infty \right\}\kern0.75em {u}_{\mathrm{AT}}=1+\gamma \xi s;\ {u}_{\mathrm{BT}}=0\hfill \\ {}\left.s,{s}^{\prime}\to 0\right\}\hfill \end{array} $$
(55)
$$ \gamma {\left(\frac{\partial {u}_{\mathrm{AT}}}{\partial s}\right)}_{s=0}-\xi {\gamma}^2{u}_{\mathrm{AT}}\left(s=0\right)=-{\left(\frac{\partial {u}_{\mathrm{BT}}}{\partial {s}^{\prime }}\right)}_{s^{\prime }=0}+\xi {u}_{\mathrm{BT}}\left({s}^{\prime }=0\right) $$
(56)
$$ {u}_{\mathrm{AT}}\left(s=0\right)={u}_{\mathrm{BT}}\left({s}^{\prime }=0\right){e}^{\eta^{\prime }} $$
(57)

with

$$ \gamma =\sqrt{\frac{D_{\mathrm{eff}}}{D_{\mathrm{eff}}^{\prime }}} $$
(58)

According to Koutecký’s method, the solutions of system (54) are supposed to be functional series as follows:

$$ \left\{\begin{array}{l}{u}_{\mathrm{AT}}\left(s,\xi \right)={\displaystyle \sum_{j=0}^{\infty }{\sigma}_j(s){\xi}^j}\\ {}{u}_{\mathrm{BT}}\left({s}^{\hbox{'}},\xi \right)={\displaystyle \sum_{j=0}^{\infty }{\phi}_j\left({s}^{\hbox{'}}\right){\xi}^j}\end{array}\right. $$
(59)

with

$$ \left.\begin{array}{l}{\sigma}_j(s)={h}_j{\psi}_j(s)+\frac{\sigma_j\left(s=\infty \right)}{\underset{s\to \infty }{ \lim }{L}_j}{L}_j\\ {}{\phi}_j\left({s}^{\prime}\right)={h}_j^{\prime }{\psi}_j\left({s}^{\prime}\right)+\frac{\phi_j\left({s}^{\hbox{'}}=\infty \right)}{\underset{s^{\prime}\to \infty }{ \lim }{L}_j}{L}_j\end{array}\right\}\forall j $$
(60)

where h j and h j are constants that are determined by application of the boundary value problem and L j are numeric series of s potencies. In addition, ψ j are Koutecký’s functions that have the following properties:

$$ \left\{\begin{array}{l}{\psi}_j(0)=1\\ {}{\psi}_j\left(\infty \right)=0\\ {}{\psi}_j^{\prime}\left(z>0\right)=-{p}_j{\psi}_{j-1}\left(z>0\right)\kern1.2em \\ {}{\psi}_0^{\prime}\left(z>0\right)=1-erf\left(z>0\right)\kern0.96em \end{array}\right. $$
(61)

with ψ′ being the first derivative. Hence, by introducing expression (59) into Eqs. (54)–(57), one obtains:

$$ \begin{array}{l}\left\{\begin{array}{l}{\sigma}_j^{{\prime\prime} }(s)+2s\;{\sigma}_j^{\prime }(s)-2j{\sigma}_j(s)=0\hfill \\ {}{\phi}_j^{{\prime\prime}}\left({s}^{\prime}\right)+2{s}^{\prime }{\phi}_j^{\prime}\left({s}^{\prime}\right)-2j{\phi}_j\left({s}^{\prime}\right)=0\hfill \end{array}\right.\hfill \\ {}\left.s,{s}^{\prime}\to \infty \right\}\hfill \end{array} $$
(62)
$$ \begin{array}{l}\left\{\begin{array}{l}{\sigma}_0\left(\infty \right)=1;\ {\sigma}_1\left(\infty \right)=\gamma s; \kern0.37em {\sigma}_{j\ge 2}\left(\infty \right)=0\hfill \\ {}{\phi}_{j\ge 0}\left(\infty \right)=0\hfill \end{array}\right.\hfill \\ {}\left.s,{s}^{\prime}\to 0\right\}\hfill \end{array} $$
(63)
$$ \left\{\begin{array}{l}\gamma {\sigma}_0^{\prime }(0)=-{\phi}_0^{\prime }(0)\\ {}\gamma {\sigma}_j^{\prime }(0)-{\gamma}^2{\sigma}_{j-1}(0)=-{\phi}_j^{\prime }(0)+{\phi}_{j-1}(0); \kern0.75em j>0\end{array}\right. $$
(64)
$$ {\sigma}_j(0)={\phi}_j(0){e}^{\eta^{\prime }}\kern0.5em ;\kern0.5em j\ge 0 $$
(65)

where σ j and ϕ j are the first derivatives while σ j and ϕ j are the second ones. For j = 0, the solutions of system (62) are given by:

$$ \left\{\begin{array}{l}{\sigma}_0(s)={h}_0 erfc(s)+{\sigma}_0\left(s=\infty \right)erf(s)\\ {}{\phi}_0\left({s}^{\prime}\right)={h}_0^{\prime } erfc\left({s}^{\prime}\right)+{\phi}_0\left({s}^{\prime }=\infty \right)erf\left({s}^{\prime}\right)\end{array}\right. $$
(66)

and considering the conditions given in (63):

$$ \left\{\begin{array}{l}{\sigma}_0(s)={h}_0 erfc(s)+erf(s)\\ {}{\phi}_0\left({s}^{\prime}\right)={h}_0^{\prime } erfc\left({s}^{\prime}\right)\end{array}\right. $$
(67)

we can write that:

$$ \left\{\begin{array}{l}{\sigma}_0(0)={h}_0\kern4.56em \\ {}{\phi}_0(0)={h}_0^{\prime}\\ {}{\sigma}_0^{\prime }(0)={p}_0\left(1-{h}_0\right)\\ {}\;{\phi}_0^{\prime }(0)=-{p}_0{h}_0^{\prime}\end{array}\right. $$
(68)

with

$$ {p}_0=\frac{2}{\sqrt{\pi }} $$
(69)

Thus, by introducing Eq. (68) into Eqs. (64) and (65), we obtain that:

$$ {h}_0=\frac{\gamma }{1+\gamma {e}^{\eta^{\prime }}}{e}^{\eta^{\prime }} $$
(70)
$$ {h}_0^{\prime }=\frac{\gamma }{1+\gamma {e}^{\eta^{\prime }}} $$
(71)

For j = 1 and considering conditions (63), we can write that:

$$ \left\{\begin{array}{l}{\sigma}_1(s)={h}_1{\psi}_1(s)+\gamma s\\ {}{\phi}_1\left({s}^{\prime}\right)={h}_1^{\prime }{\psi}_1\left({s}^{\prime}\right)\end{array}\right. $$
(72)

so that, taking into account properties (61), it is fulfilled that:

$$ \left\{\begin{array}{l}{\sigma}_1(0)={h}_1\kern2.76em \\ {}{\phi}_1(0)={h}_1^{\prime}\\ {}{\sigma}_1^{\prime }(0)=\gamma -{h}_1{p}_1\\ {}{\phi}_1^{\prime }(0)=-{h}_1^{\prime }{p}_1\end{array}\right. $$
(73)

with

$$ {p}_i=\frac{2i}{p_{i-1}}\kern0.84em i\ge 1 $$
(74)

By substitution of Eqs. (68) and (73) in conditions (64) and (65), one obtains that:

$$ \left\{\begin{array}{l}{h}_1=\frac{\gamma^2\left(1-{h}_0\right)-{h}_0^{\prime }}{p_1\left(1+\gamma {e}^{\eta \prime}\right)}{e}^{\eta \prime}\\ {}{h}_1^{\prime }=\frac{\gamma^2\left(1-{h}_0\right)-{h}_0^{\prime }}{p_1\left(1+\gamma {e}^{\eta \prime}\right)}\end{array}\right. $$
(75)

and taking into account (70) and (71), it is finally obtained that:

$$ \left\{\begin{array}{l}{h}_1=\frac{\gamma \left(\gamma -1\right){e}^{\eta \prime }}{p_1{\left(1+\gamma {e}^{\eta \prime}\right)}^2}\\ {}{h}_1^{\prime }=\frac{\gamma \left(\gamma -1\right)}{p_1{\left(1+\gamma {e}^{\eta \prime}\right)}^2}\end{array}\right. $$
(76)

Following an analogous procedure to that described above, the form of the coefficients h and h′ for j > 0 can be generalised as:

$$ \left\{\begin{array}{l}{h}_{j>0}=\frac{{\left(-1\right)}^{j+1}\gamma \left(\gamma -1\right){\left(1+{\gamma}^2{e}^{\eta \prime}\right)}^{j-1}}{{\left(1+\gamma {e}^{\eta^{\hbox{'}}}\right)}^{j+1}{\displaystyle \prod_{i=1}^j{p}_i}}{e}^{\eta \prime}\\ {}{h}_{j>0}^{\prime }=\frac{{\left(-1\right)}^{j+1}\gamma \left(\gamma -1\right){\left(1+{\gamma}^2{e}^{\eta^{\hbox{'}}}\right)}^{j-1}}{{\left(1+\gamma {e}^{\eta \prime}\right)}^{j+1}{\displaystyle \prod_{i=1}^j{p}_i}}\end{array}\right. $$
(77)

such that the coefficients of the solutions (59) are given by:

$$ \left\{\begin{array}{l}{\sigma}_0(s)=\frac{\gamma }{1+\gamma {e}^{\eta \prime }}{e}^{\eta \prime } erfc(s)+erf(s)\\ {}{\phi}_0\left(s^{\prime}\right)=\frac{\gamma }{1+\gamma {e}^{\eta \prime }} erfc\left(s^{\prime}\right)\end{array}\right. $$
(78)
$$ \left\{\begin{array}{l}{\sigma}_1(s)=\frac{\gamma \left(\gamma -1\right){e}^{\eta \prime }}{p_1{\left(1+\gamma {e}^{\eta \prime}\right)}^2}{\psi}_1(s)+\gamma s\\ {}{\phi}_1\left(s^{\prime}\right)=\frac{\gamma \left(\gamma -1\right)}{p_1{\left(1+\gamma {e}^{\eta \prime}\right)}^2}{\psi}_1\left(s^{\prime}\right)\end{array}\right. $$
(79)
$$ \left\{\begin{array}{l}{\sigma}_{j>1}(s)=\frac{{\left(-1\right)}^{j+1}\gamma \left(\gamma -1\right){\left(1+{\gamma}^2{e}^{\eta \prime}\right)}^{j-1}}{{\left(1+\gamma {e}^{\eta^{\hbox{'}}}\right)}^{j+1}{\displaystyle \prod_{i=1}^j{p}_i}}{e}^{\eta^{\hbox{'}}}{\psi}_j(s)\\ {}{\phi}_{j>1}\left(s^{\prime}\right)=\frac{{\left(-1\right)}^{j+1}\gamma \left(\gamma -1\right){\left(1+{\gamma}^2{e}^{\eta^{\hbox{'}}}\right)}^{j-1}}{{\left(1+\gamma {e}^{\eta \prime}\right)}^{j+1}{\displaystyle \prod_{i=1}^j{p}_i}}{\psi}_j\left(s^{\prime}\right)\end{array}\right. $$
(80)

and by substituting in Eq. (59):

$$ \left\{\begin{array}{l}{u}_{\mathrm{AT}}\left(s,\xi \right)=\frac{\gamma }{1+\gamma {e}^{\eta \prime }}{e}^{\eta \prime } erfc(s)+erf(s)+\gamma s\xi +\gamma \left(\gamma -1\right){e}^{\eta \prime }{\displaystyle \sum_{j=1}^{\infty}\frac{{\left(-1\right)}^{j+1}{\left(1+{\gamma}^2{e}^{\eta \prime}\right)}^{j-1}}{{\left(1+\gamma {e}^{\eta \prime}\right)}^{j+1}{\displaystyle \prod_{i=1}^j{p}_i}}{\xi}^j{\psi}_j(s)}\\ {}\\ {}{u}_{\mathrm{BT}}\left(s^{\prime },\xi \right)=\frac{\gamma }{1+\gamma {e}^{\eta \prime }} erfc\left(s^{\prime}\right)+\gamma \left(\gamma -1\right){\displaystyle \sum_{j=1}^{\infty}\frac{{\left(-1\right)}^{j+1}{\left(1+{\gamma}^2{e}^{\eta \prime}\right)}^{j-1}}{{\left(1+\gamma {e}^{\eta \prime}\right)}^{j+1}{\displaystyle \prod_{i=1}^j{p}_i}}{\xi}^j{\psi}_j\left(s^{\prime}\right)}\end{array}\right. $$
(81)

From the last expression (81), one can deduce that it is convenient to redefine the sphericity dimensionless variable as:

$$ \xi^{\prime }=\frac{\left(1+{\gamma}^2{e}^{\eta \prime}\right)}{\left(1+\gamma {e}^{\eta \prime}\right)}\xi $$
(82)

such that (81) simplifies to:

$$ \left\{\begin{array}{l}{u}_{\mathrm{AT}}\left(s,\xi^{\prime}\right)=\frac{\gamma }{1+\gamma {e}^{\eta \prime }}{e}^{\eta \prime } erfc(s)+erf(s)+\gamma s\frac{\xi^{\prime}\left(1+\gamma {e}^{\eta \prime}\right)}{\left(1+{\gamma}^2{e}^{\eta \prime}\right)}-\frac{\gamma \left(\gamma -1\right){e}^{\eta \prime }}{\left(1+{\gamma}^2{e}^{\eta \prime}\right)\left(1+\gamma {e}^{\eta \prime}\right)}{\displaystyle \sum_{j=1}^{\infty}\frac{{\left(-1\right)}^j{\left(\xi \prime \right)}^j}{{\displaystyle \prod_{i=1}^j{p}_i}}{\psi}_j(s)}\\ {}\\ {}{u}_{\mathrm{BT}}\left(s^{\prime },\xi^{\prime}\right)=\frac{\gamma }{1+\gamma {e}^{\eta \prime }} erfc\left(s^{\prime}\right)-\frac{\gamma \left(\gamma -1\right)}{\left(1+{\gamma}^2{e}^{\eta \prime}\right)\left(1+\gamma {e}^{\eta \prime}\right)}{\displaystyle \sum_{j=1}^{\infty}\frac{{\left(-1\right)}^j{\left(\xi \prime \right)}^j}{{\displaystyle \prod_{i=1}^j{p}_i}}{\psi}_j\left(s^{\prime}\right)}\end{array}\right. $$
(83)

Now, considering the definition of the variables u AT and u BT (47) and taking into account (52) and (53), the concentration profiles of the pseudo-species AT (A + AL) and BT (B + BL) are obtained:

$$ {c}_{\mathrm{AT}}\left(s,\xi^{\prime}\right)={c}_{\mathrm{AT}}^{*}-\frac{r_0}{r}\left(\frac{c_{\mathrm{AT}}^{*}}{1+\gamma {e}^{\eta \prime }}\right) erfc(s)-\frac{r_0}{r}\frac{c_{\mathrm{AT}}^{*}\gamma \left(\gamma -1\right){e}^{\eta \prime }}{\left(1+{\gamma}^2{e}^{\eta \prime}\right)\left(1+\gamma {e}^{\eta \prime}\right)}{\displaystyle \sum_{j=1}^{\infty}\frac{{\left(-1\right)}^j{\left(\xi \prime \right)}^j}{{\displaystyle \prod_{i=1}^j{p}_i}}{\psi}_j(s)} $$
(84)
$$ {c}_{\mathrm{BT}}\left(s^{\prime },\xi^{\prime}\right)=\frac{r_0}{r}\left(\frac{c_{\mathrm{AT}}^{*}}{1+\gamma {e}^{\eta \prime }}\right)\gamma erfc\left(s^{\prime}\right)-\frac{r_0}{r}\frac{c_{\mathrm{AT}}^{*}\gamma \left(\gamma -1\right)}{\left(1+{\gamma}^2{e}^{\eta \prime}\right)\left(1+\gamma {e}^{\eta \prime}\right)}{\displaystyle \sum_{j=1}^{\infty}\frac{{\left(-1\right)}^j{\left(\xi \prime \right)}^j}{{\displaystyle \prod_{i=1}^j{p}_i}}{\psi}_j\left(s^{\prime}\right)} $$
(85)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laborda, E., Olmos, J.M., Martínez-Ortiz, F. et al. Voltammetric speciation studies of systems where the species diffusivities differ significantly. J Solid State Electrochem 19, 549–561 (2015). https://doi.org/10.1007/s10008-014-2620-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2620-y

Keywords

Navigation