Skip to main content
Log in

An in situ colorimetric measurement study of electrochromism in the thin-film nickel hydroxide/oxyhydroxide system

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochromic thin-film ‘hydrous nickel oxide’ (nickel hydroxide) was deposited on fluorine-doped tin oxide (FTO)/glass substrates by galvanostatic electrochemical reduction at −0.1 mA cm−2 for 100, 400 and 800 s from aqueous 0.01 mol dm−3 nickel nitrate solution. Following transfer to aqueous 0.1 mol dm−3 potassium hydroxide, the transmittance and absorbance changes, colouration efficiencies and stability to multiple potential cycling were measured on reversibly electrochemically switching the transmissive light green (essentially ‘bleached’) ‘hydrous nickel oxide’ to the deep brown (‘coloured’) nickel oxyhydroxide redox state. The ‘hydrous nickel oxide’ (as deposited) films showed excellent transmittance modulation, achieving a maximum Δ%T of 83.2 at 432 nm, for the highest deposition time (800 s) studied. Colouration efficiency (CE) values were ∼30 cm2 C−1, with response times of 12.0 s (colouration) and 9.5 s (‘bleaching’). Using the Commission Internationale de l’Eclairage (CIE) system of colorimetry, the colour stimuli at rest, and on dynamically reversibly switching between the electrochromic redox states were calculated from in situ visible spectra recorded under electrochemical control. Reversible changes in hue and saturation occur, as shown by the track of the CIE 1931 xy chromaticity coordinates, together with a sharp decrease in luminance on oxidation. CIELAB L*a*b* coordinates were also used to quantify the colour of the electrochromic films. A combination of a low L*, and positive a* and b* values, quantified the perceived deep brown ‘coloured’ state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Monk PMS, Mortimer RJ, Rosseinsky DR (2007) Electrochromism and electrochromic devices. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Mortimer RJ (2011) Electrochromic materials. Annu Rev Mater Res 41:241–268

    Article  CAS  Google Scholar 

  3. Baetens R, Jelle BP, Gustavsen A (2010) Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol Energy Mater Sol Cells 94:87–105

    Article  CAS  Google Scholar 

  4. Niklasson GA, Granqvist C-G (2007) Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 17:127–156

    Article  CAS  Google Scholar 

  5. Nagai J, McMeeking GD, Saitoh Y (1999) Durability of electrochromic glazing. Sol Energy Mater Sol Cells 56:309–319

    Article  CAS  Google Scholar 

  6. Zelazowska E, Rysiakiewicz-Pasek E (2008) WO3-based electrochromic system with hybrid organic-inorganic gel electrolytes. J Non-Cryst Solids 354:4500–4505

    Article  CAS  Google Scholar 

  7. Carpenter MK, Conell RS, Corrigan DA (1987) The electrochromic properties of hydrous nickel oxide. Sol Energy Mater 16:333–346

    Article  CAS  Google Scholar 

  8. Yuan YF, Xia XH, Wu JB, Chen YB, Yang JL, Guo SY (2011) Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition. Electrochim Acta 56:1208–1212

    Article  CAS  Google Scholar 

  9. Xu YZ, Qiu MQ, Qiu SC, Dai J, Cao GJ, He HH, Wang JY (1997) Electrochromism of NiOxHy films grown by DC sputtering. Sol Energy Mater Sol Cells 45:105–113

    Article  CAS  Google Scholar 

  10. Yueyan S, Zhiyang Z, Xiaoji Y (2002) Electrochromic properties of NiOxHy thin films. Sol Energy Mater Sol Cells 71:51–59

    Article  Google Scholar 

  11. Conell RS, Corrigan DA, Powell BR (1992) The electrochromic properties of sputtered nickel oxide films. Sol Energy Mater Sol Cells 25:301–313

    Article  CAS  Google Scholar 

  12. Lin F, Nordlund D, Weng T-C, Moore RG, Gillaspie DT, Dillon AC, Richards RM, Engtrakul C (2013) Hole doping in Al-containing nickel oxide to improve electrochromic performance. ACS Appl Mater Interfaces 5:301–309

    Article  CAS  Google Scholar 

  13. Agrawal A, Habibi HR, Agrawal RK, Cronin JP, Roberts DM, Caron-Papowich R, Lampert CM (1992) Effect of deposition pressure on the microstructure and electrochromic properties of electron-beam-evaporated nickel oxide films. Thin Solid Films 221:239–253

    Article  CAS  Google Scholar 

  14. Scarminio J, Urbano A, Gardes BJ, Gorenstein A (1992) Electrochromism in nickel oxide films obtained by thermal decomposition. J Mater Sci Lett 11:562–563

    Article  CAS  Google Scholar 

  15. Sharma PK, Fantini MCA, Gorenstein A (1998) Synthesis, characterization and electrochromic properties of NiOxHy thin film prepared by a sol-gel method. Solid State Ionics 113–115:457–463

    Article  Google Scholar 

  16. Dalavi DS, Devan RS, Patil RS, Ma Y-R, Patil PS (2013) Electrochromic performance of sol-gel deposited NiO thin film. Mater Lett 90:60–63

    Article  CAS  Google Scholar 

  17. Dalavi DS, Suryavanshi MJ, Patil DS, Mali SS, Moholkar AV, Kalagi SS, Vanalkar SA, Kang SR, Kim JH, Patil PS (2011) Nanoporous nickel oxide thin films and its improved electrochromic performance: effect of thickness. Appl Surf Sci 257:2647–2656

    Article  CAS  Google Scholar 

  18. Zhang E, Tang Y, Zhang Y, Guo C, Yang L (2009) Hydrothermal synthesis of β-nickel hydroxide nanocrystalline thin film and growth of oriented carbon nanofibers. Mater Res Bull 44:1765–1770

    Article  CAS  Google Scholar 

  19. Dalavi DS, Devan RS, Patil RS, Ma Y-R, Kang M-G, Kim J-H, Patil PS (2013) Electrochromic properties of dandelion flower like nickel oxide thin films. J Mater Chem A 1:1035–1039

    Article  CAS  Google Scholar 

  20. Patil RA, Devan RS, Lin J-H, Ma Y-R, Patil PS, Liou Y (2013) Efficient electrochromic properties of high-density and large-area arrays of one-dimensional NiO nanorods. Sol Energy Mater Sol Cells 112:91–96

    Article  CAS  Google Scholar 

  21. Maruyama T, Arai S (1993) The electrochromic properties of nickel oxide thin films prepared by chemical vapor deposition. Sol Energy Mater Sol Cells 30:257–262

    Article  CAS  Google Scholar 

  22. Sialvi MZ, Mortimer RJ, Wilcox GD, Mat Teridi A, Varley TS, Wijayantha KGU, Kirk CA (2013) Electrochromic and colorimetric properties of nickel(II) oxide thin films prepared by aerosol-assisted chemical vapour deposition. ACS Appl Mater Interfaces 5:5675–5682

    Article  CAS  Google Scholar 

  23. Vidotti M, van Greco C, Ponzio EA, Córdoba de Torresi SI (2006) Sonochemically synthesized Ni(OH)2 and Co(OH)2 nanoparticles and their application in electrochromic electrodes. Electrochem Commun 8:554–560

    Article  CAS  Google Scholar 

  24. Vidotti M, Córdoba de Torresi SI (2009) Electrostatic layer-by-layer and electrophoretic depositions as methods for electrochromic nanoparticle immobilization. Electrochim Acta 54:2800–2804

    Article  CAS  Google Scholar 

  25. Falk SU, Salkind AJ (1969) Alkaline storage batteries. Wiley, New York

    Google Scholar 

  26. Besenhard JO (ed) (1999) Handbook of battery materials. Wiley‒VCH, Weinheim

    Google Scholar 

  27. Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  28. (2004) CIE technical report: colorimetry, 3rd edn. Commission Internationale De l’Eclairage, Vienna, Austria

  29. Mortimer RJ, Varley TS (2011) Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to in situ colorimetry studies of electrochromic materials. Displays 32:35–44

    Article  CAS  Google Scholar 

  30. Mortimer RJ, Reynolds JR (2005) In situ colorimetric and composite coloration efficiency measurements for electrochromic Prussian blue. J Mater Chem 15:2226–2233

    Article  CAS  Google Scholar 

  31. Thompson BC, Schottland P, Zong K, Reynolds JR (2000) In situ colorimetric analysis of electrochromic polymers and devices. Chem Mater 12:1563–1571

    Article  CAS  Google Scholar 

  32. Mortimer RJ, Reynolds JR (2008) An in situ colorimetric measurement study of electrochromism in the di-n-heptyl viologen system. Displays 29:424–431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Loughborough University Materials Research School for the provision of a research studentship to MZS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Mortimer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortimer, R.J., Sialvi, M.Z., Varley, T.S. et al. An in situ colorimetric measurement study of electrochromism in the thin-film nickel hydroxide/oxyhydroxide system. J Solid State Electrochem 18, 3359–3367 (2014). https://doi.org/10.1007/s10008-014-2618-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2618-5

Keywords

Navigation