Skip to main content
Log in

In situ investigation of local corrosion at interphase boundary under an electrochemical-atomic force microscope

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Different phases in a multiphase alloy may act as micro-electrodes, resulting in local or internal galvanic corrosion. Using an electrochemical-atomic force microscope (EC-AFM), we investigated local aqueous corrosion of a high-Cr cast iron in spots at different distances from the primary carbide. Results of the study demonstrated that carbides in the cast iron may not act as effective cathodes due to their high electrical resistivity. Instead, the carbide/matrix interfacial mismatch makes the regions in vicinity of the interface highly anodic, which act as anodes while the regions away from the interface act as cathodes. As a result, the corrosion rate at the interface can be considerably larger than that of regions apart away from the interface. Efforts are made to elucidate relevant mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prochazkova J, Podzimek S, Tomka M, Kucerova H, Mihaljevic M, Hana K, Miksovsky M, Sterzl I, Vinsova J (2006) Neuroendocrinol Lett 27:53–58

    CAS  Google Scholar 

  2. Chebahi N, Nedjar R, Bounoughaz M, Rebbah H (2008) Asian J Chem 20:2563–2569

    CAS  Google Scholar 

  3. Izquierdo J, Gonzalez S, Souto RM (2012) Int J Electrochem Sci 7:11377–11388

    CAS  Google Scholar 

  4. Femenia M, Pan J, Leygraf C, Luukkonen P (2001) Corros Sci 43:1939–1951

    Article  CAS  Google Scholar 

  5. Colley AL, Williams CG, Johansson UD, Newton ME, Unwin PR, Wilson NR, Macpherson JV (2006) Anal Chem 78:2539–2548

    Article  CAS  Google Scholar 

  6. Bhagavathi LR, Chaudhari GP, Nath SK (2011) Mater Des 32:433–440

    Article  CAS  Google Scholar 

  7. Qu S, Pang X, Wang Y, Gao K (2013) Corros Sci 75:67–77

    Article  CAS  Google Scholar 

  8. Kain V, Shinde SS, Gadiyar HS (1994) J Mater Eng Perform 3:699–705

    Article  CAS  Google Scholar 

  9. Scully JR (2000) Environment-assisted intergranular cracking: factors that promote crack path connectivity, In: R. D. Kane (ed.) Environmentally assisted cracking: predictive methods for risk assessment and evaluation of materials, equipment, and structures, vol. 1401, ASTM STP pp. 40–69

  10. Hirai N, Okada H, Hara S (2003) Mater Trans 44:727–730

    Article  CAS  Google Scholar 

  11. Davoodi A, Pan J, Leygraf C, Norgren S (2006) Appl Surf Sci 252:5499–5503

    Article  CAS  Google Scholar 

  12. Conradi M, Schon PM, Kocijan A, Jenko M, Vancso GJ (2011) Mater Chem Phys 130:708–713

    Article  CAS  Google Scholar 

  13. Bettini E, Eriksson T, Boström M, Leygraf C, Pan J (2011) Electrochim Acta 56:9413–9419

    Article  CAS  Google Scholar 

  14. Klasaa J, Ruiz-Agudoc E, Wangd LJ, Putnisa CV, Valsami-Jonesb E, Mennekena M (2013) Geochim Cosmochim Acta 117:115–128

    Article  Google Scholar 

  15. Bettini E, Kivisäkk U, Leygraf C, Pan J (2014) Int J Electrochem Sci 9:61–80

    Google Scholar 

  16. de Wit JHW (2001) Electrochim Acta 46:3641–3650

    Article  Google Scholar 

  17. Mudali UK, Padhy N (2011) Corros Rev 29:73–103

    CAS  Google Scholar 

  18. Li M, Guo LQ, Qiao LJ, Bai Y (2012) Corros Sci 60:76–81

    Article  CAS  Google Scholar 

  19. Guo LQ, Zhao XM, Wang BC, Bai Y, Xu BZ, Qiao LJ (2013) Corros Sci 70:188–193

    Article  CAS  Google Scholar 

  20. Reynaud-Laporte I, Vayer M, Kauffmann JP, Erre R (1997) Microsc Microanal Microstruct 8:175–185

    Article  CAS  Google Scholar 

  21. Hirai N, Okada H, Hara S (2000) Isij Int 40:702–705

    Article  CAS  Google Scholar 

  22. Rocca E, Bertrand G, Rapin C, Labrune JC (2001) J Electroanal Chem 503:133–140

    Article  CAS  Google Scholar 

  23. Kinzel AB, Franks R (1940) High-chromium cast irons the alloys of iron and chromium, in, vol. 2, McGraw-Hill Book Company Inc, pp. 228–260

  24. Gunlach RB (1988) Casting, ASM Handbook. In: Committee IH (Ed.) High-alloy white irons, in: A.S.M., vol. 15, ASM International pp.679–685

  25. Tang XH, Chung R, Pang CJ, Li DY, Hinckley B, Dolman K (2011) Wear 271:1426–1431

    Article  CAS  Google Scholar 

  26. Chung RJ, Tang X, Li DY, Hinckley B, Dolman K (2011) Wear 271:1454–1461

    Article  CAS  Google Scholar 

  27. He ZR, Lin GX, Ji S (1997) Mater Sci Eng A 234–236:161–164

    Article  Google Scholar 

  28. Collini L, Nicoletto G, Konečná R (2008) Mater Sci Eng A 488:529–539

    Article  Google Scholar 

  29. Tang XH, Chung R, Li DY, Hinckley B, Dolman K (2009) Wear 267:116–121

    Article  CAS  Google Scholar 

  30. William J, Callister D (1999) Materials science and engineering: an introduction, 5th edn. Wiley, New York

    Google Scholar 

  31. Gale WF, Totemeier TC (2004) Smithells metals reference book, 8th edn. ASM International, Amsterdam

    Google Scholar 

  32. Pierson HO (1996) Handbook of refractory carbides and nitrides: properties, characteristics, processing, and application. William Andrew Publishing/Noyes 16:108

  33. Umemoto M, Liu ZG, Takaoka H, Sawakami M, Tsuchiya K, Masuyama K (2001) Metall Mater Trans 32A:2127–2131

    Article  CAS  Google Scholar 

  34. Liu ZG, Sawakami M, Takaoka H, Masuyama K, Tsuchiya K, Umemoto M (2001) Characterization of bulk cementite and effect of alloy additions. Int J Mater Prod Technol 1:415–420

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Natural Science and Engineering Research Council of Canada and AUTO21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, N., Tang, X., Li, D.Y. et al. In situ investigation of local corrosion at interphase boundary under an electrochemical-atomic force microscope. J Solid State Electrochem 19, 337–344 (2015). https://doi.org/10.1007/s10008-014-2601-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2601-1

Keywords

Navigation