Skip to main content

Advertisement

Log in

Efficient carbon dioxide electrolysis based on ceria cathode loaded with metal catalysts

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Fluorite-type heterogeneous catalyst ceria is a mixed conductor and widely used as a hydrocarbon-fueled solid oxide fuel cell anode because of its advantage of anti-carbon deposition, redox stability, and thermal compatibility. However, the electrocatalytic activity of a ceria cathode is limited for the catalysis of electrochemical oxidation or reduction reactions. In this work, catalytic-active iron and nickel catalysts are loaded onto a ceria cathode via an infiltration method to enhance electrode performance. Direct electrolysis of carbon dioxide is performed on ceria cathodes loaded with iron and nickel catalysts in solid oxide electrolyzers, respectively. The polarization resistance of symmetrical cells and electrolysis cells loaded with nickel and iron catalysts is largely improved in comparison with the bare ceria. The current efficiencies for carbon dioxide electrolysis for the iron- and nickel-loaded cathodes are 76 and 80 % at 2.0 V and 800 °C, respectively, approximately 25 % higher than that for the bare ceria cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xie K, Zhang YQ, Meng GY, Irvine JTS (2011) Energy Environ Sci 4:2218–2222

    Article  CAS  Google Scholar 

  2. Sista S, Hong Z, Chen L, Yang Y (2011) Energy Environ Sci 4:1606–1620

    Article  CAS  Google Scholar 

  3. Hauch A, Ebbesen SD, Jensen SH, Mogensen M (2008) J Mater Chem 18:2331–2340

    Article  CAS  Google Scholar 

  4. Bidrawn F, Kim G, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2008) Electrochem Solid State Lett 11:B167–B170

    Article  CAS  Google Scholar 

  5. Jensen SH, Larsen PH, Mogensen M (2007) Int J Hydrog Energy 32:3253–3257

    Article  CAS  Google Scholar 

  6. Brisse A, Schefold J, Zahid M (2008) Int J Hydrog Energy 33:5375–5382

    Article  CAS  Google Scholar 

  7. Zhan ZL, Zhao L (2010) J Power Sources 195:7250–7254

    Article  CAS  Google Scholar 

  8. Ebbesen SD, Mogensen M (2009) J Power Sources 193:349–358

    Article  CAS  Google Scholar 

  9. Hansen KV, Norrman K, Mogensen M (2004) J Electrochem Soc 151:A1436–A1444

    Article  CAS  Google Scholar 

  10. Pihlatie M, Kaiser A, Mogensen M (2009) Solid State Ionics 180:1100–1112

    Article  CAS  Google Scholar 

  11. Yang XD, Irvine JTS (2008) J Mater Chem 18:2349–2354

    Article  CAS  Google Scholar 

  12. Wu GJ, Xie K, Wu YC, Yao WT, Zhou J (2013) J Power Sources 232:187–192

    Article  CAS  Google Scholar 

  13. Alzate-Restrepo A, Hill JM (2010) J Power Sources 195:1344–1351

    Article  CAS  Google Scholar 

  14. Weber A, Sauer B, Müller AC, Herbstritt D, Ivers-Tiffée E (2002) Solid State Ionics 152–153:543–550

    Article  Google Scholar 

  15. Gan Y, Zhang J, Li SS, Xie K, Irvine JTS (2012) J Electrochem Soc 159:F763–F767

    Article  CAS  Google Scholar 

  16. Tao SW, Irvine JTS (2003) Nat Mater 2:320–323

    Article  CAS  Google Scholar 

  17. Tao SW, Irvine JTS, Kilner JA (2005) Adv Mater 17:1734–1737

    Article  CAS  Google Scholar 

  18. Bastidas DM, Tao SW, Irvine JTS (2006) J Mater Chem 16:1603–1605

    Article  CAS  Google Scholar 

  19. Xu SS, Li SS, Yao WT, Dong DH, Xie K (2003) J Power Sources 230:115–121

    Article  Google Scholar 

  20. Tsekouras G, Neagu D, Irvine JTS (2013) Energy Environ Sci 6:256–266

    Article  CAS  Google Scholar 

  21. Li YX, Gan Y, Li SS, Wang Y, Xiang HF, Xie K (2012) Phys Chem Chem Phys 14:15547–15553

    Article  CAS  Google Scholar 

  22. Guzman J, Carrettin S, Corma A (2005) J Am Chem Soc 127:3286–3287

    Article  CAS  Google Scholar 

  23. Chiang YM, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Appl Phys Lett 69:185–187

    Article  CAS  Google Scholar 

  24. Wang XQ, Rodriguez JA, Hanson JC, Gamarra D, Martinez-Arias A, Fernandez-Garcia M (2006) J Phys Chem B 110:428–434

    Article  CAS  Google Scholar 

  25. Machida M, Uto M, Kurogi D, Kijima T (2000) Chem Mater 12:3158–3164

    Article  CAS  Google Scholar 

  26. Chueh WC, Hao Y, Jung WC, Haile SM (2012) Nat Mater 11:155–161

    Article  CAS  Google Scholar 

  27. Murray EP, Tsai T, Barnett SA (1999) Nature 400:649–651

    Article  CAS  Google Scholar 

  28. Park S, Vohs JM, Gorte RJ (2000) Nature 404:265–267

    Article  CAS  Google Scholar 

  29. Zhang XG, Robertson M, Deces-Petit C, Qu W, Kesler O, Maric R, Ghosh D (2007) J Power Sources 164:668–677

    Article  CAS  Google Scholar 

  30. Zhao L, Shen JC, He BB, Chen FL, Xia CR (2011) Int J Hydrog Energy 36:3658–3665

    Article  CAS  Google Scholar 

  31. Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) J Chem Soc Dalton Trans 17:1686–1698

    Article  Google Scholar 

  32. Francisco MSP, Mastelaro VR (2001) J Phys Chem B 105:10515–10522

    Article  CAS  Google Scholar 

  33. Reddy BM, Khan A (2002) J Phys Chem B 106:10964–10972

    Article  CAS  Google Scholar 

  34. Shah M, Barnett SA (2008) Solid State Ionics 179:2059–2064

    Article  CAS  Google Scholar 

  35. Ruiz-Trejo E, Irvine JTS (2013) Solid State Ionics 252:157–164

    Article  CAS  Google Scholar 

  36. Park JH, Blumenthal RN (1989) J Electrochem Soc 136:2867–2876

    Article  CAS  Google Scholar 

  37. Schefold J, Brisse A, Zahid M (2009) J Electrochem Soc 156:B897–B904

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (NSFC), No. 21303037, the China Postdoctoral Science Foundation, No. 2013 M53150, the Ministry of Education of Overseas Returnees Fund, No. 20131792, and the Fundamental Research Funds for the Central Universities, No. 2012HGZY0001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kui Xie or Yucheng Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Xie, K., Qin, Q. et al. Efficient carbon dioxide electrolysis based on ceria cathode loaded with metal catalysts. J Solid State Electrochem 18, 3415–3425 (2014). https://doi.org/10.1007/s10008-014-2572-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2572-2

Keywords

Navigation