Skip to main content
Log in

Evaluation of the electrochemical capacity of spinel Li1.0348Mn1.9152Fe0.0494O4 compound from combined X-ray diffraction and particle size distribution measurements

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A cathode material of the form Li1.0348Mn1.9152Fe0.0494O4 was prepared by a sol-gel method for lithium ion batteries. The synthesized material was found to have a pure cubic spinel structure of \( Fd\overline{3}m \)space group. The compound electrochemical capacity was estimated with high accuracy from a combined particle size distribution and X-ray diffraction (XRD) measurements based on considerations of particles sizes, crystal structure, and Li contribution from well-defined unit cells in the compound particles. It was possible to estimate the thickness of the most delithiated region near the particle surfaces at any delithiation depth using a direct and nondestructive procedure. Results showed that most of the attainable capacity in the conventional voltage range originates from the surface region rather than the core of the compound particles. The present analysis is believed to be of some value for estimation of the failure mechanism in cathode compounds, thus assisting the development of Li ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yamada A (1996) J Solid State Chem 122:160–165

    Article  CAS  Google Scholar 

  2. Gadjov H, Gorova M, Kotzeva V, Avdeev G, Uzunova S, Kovacheva D (2004) J Power Sources 134:110–117

    Article  CAS  Google Scholar 

  3. Matsuda K, Taniguchi I (2004) J Power Sources 132:156–160

    Article  CAS  Google Scholar 

  4. Ting-Feng Y, Xin-Guo H, Chang-Song D, Kun G (2007) J Mater Sci 42:3825–3830

    Article  Google Scholar 

  5. Kamarulzaman N, Yusoff R, Kamarudin N, Shaari NH, Abdul Aziz NA, Bustam MA, Blagojevic N, Elcombe M, Blackford M, Avdeev M, Arof AK (2009) J Power Sources 188:274–280

    Article  CAS  Google Scholar 

  6. Leung K, Tenney CM (2013) J Phys Chem C 117:24224–24235

    Article  CAS  Google Scholar 

  7. Chan MKY, Wolverton C, Greeley JP (2012) J Am Chem Soc 134:14362–14374

    Article  CAS  Google Scholar 

  8. Livage J, Henry M, Sanchez C (1988) Prog Solid State Chem 18:259–341

    Article  CAS  Google Scholar 

  9. Mehrotra RC, Singh A (1997) Prog Inorg Chem 46:239–454

    Article  CAS  Google Scholar 

  10. Grygar T, Bezdička P, Vorm P, Jordanova N, Krtil P (2001) J Solid State Chem 161:152–160

    Article  CAS  Google Scholar 

  11. Kim BH, Choi YK, Choa YH (2003) Solid State Ionics 158:281–285

  12. Yi TF, Hao CL, Yue CB, Zhu RS, Shu JA (2009) Synth Met 159:1255–1260

    Article  CAS  Google Scholar 

  13. Woodley SM, Catlow CRA (2003) J Solid State Chem 153:310–316

    Article  Google Scholar 

  14. Kawai H, Nagata M, Tukamoto H, West AR (1998) Electrochem Solid-State Lett 1:212–214

    Article  CAS  Google Scholar 

  15. Ohzuku T, Takeda S, Iwanaga M (1990) J Power Sources 81:90–94

    Google Scholar 

  16. Ohzuku T, Ariyoshi K, Takeda S, Sakai Y (2001) Electrochim Acta 46:2327–2336

    Article  CAS  Google Scholar 

  17. Feng C, Li H, Zhang C, Guo Z, Wu H, Tang J (2012) Electrochim Acta 61:87–93

    Article  CAS  Google Scholar 

  18. Shokoohi FK, Tarascon JM, Wilken BJ, Guyomard D, Chang CC (1992) J Electrochem Soc 139:1845–1849

    Article  CAS  Google Scholar 

  19. David WIF, Thackeray MM, DePicciotto LA, Goodenough JB (1987) J Solid State Chem 67:316–323

    Article  CAS  Google Scholar 

  20. Gummow RJ, deKock A, Thackeray MM (1994) Solid State Ionics 69:59–67

    Article  CAS  Google Scholar 

  21. Xiao L, Guo Y, Qu D, Deng B, Liu H, Tang D (2013) J Power Sources 225:286–292

    Article  CAS  Google Scholar 

  22. Thackeray MM (1997) Prog Solid State Chem 25:1–71

    Article  CAS  Google Scholar 

  23. Jang YI, Huang BY, Wang HF, Sadoway DR, Chiang YM (1999) J Electrochem Soc 146:3217–3223

    Article  CAS  Google Scholar 

  24. Rodriguez MA, Ingersoll D, Doughty DH (2002) JCPDS-International Centre for Diffraction Data, Adv X-ray Anal 45:182–187

    CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, A.A.A. Al-Tabbakh, thanks the Universiti Teknologi MARA for the support through the postdoctoral fellowship. Thanks are extended to Dr. Aseel B. Al-Zubaidi, University of Technology, Baghdad, Iraq, for the valuable discussions. The authors thank Ms. Roshidah Rusdi and Ms. Nurhanna Badar for accomplishing the XRD and SEM measurements and M.H. Jaafar for the contribution to part of the battery fabrication work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Ahmed Al-Tabbakh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(GIF 592 kb)

High resolution image (TIFF 1.06 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Tabbakh, A.A.A., Kamarulzaman, N. Evaluation of the electrochemical capacity of spinel Li1.0348Mn1.9152Fe0.0494O4 compound from combined X-ray diffraction and particle size distribution measurements. J Solid State Electrochem 18, 2411–2418 (2014). https://doi.org/10.1007/s10008-014-2486-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2486-z

Keywords

Navigation