Skip to main content
Log in

Integration of capacity fading in an electrochemical model of Li-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We have developed a new method to describe a fading model integrated with a parasitic reaction of rechargeable Li-ion batteries in the present work. In our work, the Li-ion battery reactions and the parasitic reaction are incorporated into one model. A new governing equation and a new field variable are presented in the new model to characterize the parasitic reaction and the relationship to the battery fading. Due to the new variations, the parameters that are changed with the battery’s aging are able to be calculated and updated automatically in the model. The parasitic reaction is assumed to obey a Tafel equation. The simulating results show that the distribution of overpotential of the parasitic reaction as function of x shapes, a figure close to a “V,” suggests the nonuniform distribution of the parasitic current. The parasitic reaction’s equilibrium potential is proved to be one of most important factors that determine the rate of the reaction. In addition, the cutoff charging state of charge (SOC) has a large influence on the parameters related to the rate of the parasitic reaction. Therefore, controlling the charging SOC can be seen as an effective method to protect the battery from aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

S a :

Specific interfacial area of porous electrode (m2 m−3)

c :

Lithium concentration (mol m−3)

D :

Diffusion coefficient

F :

Faraday’s constant (96,487 C mol−1)

i :

Current density (A m−2)

i 0 :

Exchange current density (A m−2)

I :

Current (A)

k :

Rate constant to lithium intercalation/deintercalation (Am2.5 C−1 mol−0.5)

M :

Molecular weight (kg mol−1)

Q loss :

Volume-averaged capacity lost due to parasitic reaction (C m−3)

r :

Radius of particles (m)

R :

Universal gas constant (8.314 J mol−1 K−1)

R film :

Film resistance at the anode (Ω m2)

S :

Geometric surface area of electrode (m2)

SOC :

State of charge

t :

Time (s)

T :

Temperature (K)

E :

Local potential (V)

V :

Battery output voltage (V)

L :

Length (m)

β :

Anodic transfer coefficient of an electrochemical reaction

α :

Cathodic transfer coefficient of an electrochemical reaction

ε :

Volume fraction of a phase

φ :

Potential of a phase (V)

η :

Overpotential of an electrochemical reaction (V)

κ :

Conductivity of a phase (S m−1)

ρ :

Density of film (kg m−3)

e:

Electrolyte phase

eff:

Effective

i :

Positive or negative electrode

Li:

Li-ion intercalation/deintercalation

m:

Membrane separator

max:

Maximum value

N:

Cycle number

n:

Negative

p:

Positive electrode

film:

SEI film or SEI film reaction

grow:

Increased length of SEI film

ref:

In reference to Li+/Li electrode

s:

Solid/electrolyte interface

s/e:

Solid/electrolyte interface

0:

Initial state

con:

Consumed by the parasitic reaction

y :

Stoichiometric number of lithium ion

x :

Intercalation/deintercalation stoichiometric number of lithium ion

References

  1. Marcicki J, Conliska AT, Rizzoni G (2012) ECS Trans 41:9–21

    Article  CAS  Google Scholar 

  2. Ramadesigan V, Chen KJ, Burns NA (2011) J Electrochem Soc 158:A1048–A1054

    Article  CAS  Google Scholar 

  3. Hibino M, Nakamura M, Kamitaka Y (2006) Solid State Ionics 177:2653–2656

    Article  CAS  Google Scholar 

  4. Wang Z, Huang Y, Wang X (2013) Solid State Ionics 232:19–23

    Article  CAS  Google Scholar 

  5. Liu P, Wang J, Hicks-Garner J (2010) J Electrochem Soc 157:A499–A507

    Article  CAS  Google Scholar 

  6. Fu LJ, Endo K, Sekine K (2006) J Power Sources 162:663–666

    Article  CAS  Google Scholar 

  7. Zhao S, Bai Y, Ding L (2013) Solid State Ionics 247–248:22–29

    Article  Google Scholar 

  8. Ramadass P, Haran B, White R (2003) J Power Sources 123:230–240

    Article  CAS  Google Scholar 

  9. Aurbach D (2000) J Power Sources 89:206–218

    Article  CAS  Google Scholar 

  10. Aurbach D, Markovsky B, Rodkin A (2002) Electrochim Acta 47:1899–1911

    Article  CAS  Google Scholar 

  11. Aurbach D, Zinigrad E, Cohen Y (2002) Solid State Ionics 148:405–416

    Article  CAS  Google Scholar 

  12. Ramadass P, Haran B, Gomadam PM (2004) J Electrochem Soc 151:A196–A203

    Article  CAS  Google Scholar 

  13. Ploehn HJ, Ramadass P, White RE (2004) J Electrochem Soc 151:A456–A462

    Article  CAS  Google Scholar 

  14. Safari M, Morcrette M, Teyssot A (2009) J Electrochem Soc 156:A145–A153

    Article  CAS  Google Scholar 

  15. Safari M, Morcrette M, Teyssot A (2010) J Electrochem Soc 157:A892–A898

    Article  CAS  Google Scholar 

  16. Safari M, Delacourt C (2011) J Electrochem Soc 158:A1123–A1135

    Article  CAS  Google Scholar 

  17. Safari M, Delacourt C (2011) J Electrochem Soc 158:A1436–A1447

    Article  CAS  Google Scholar 

  18. Vazquez-Arenas J, Fowler M, Mao XF (2012) J Power Sources 215:28–35

    Article  CAS  Google Scholar 

  19. Ning G, Popov BN (2004) J Electrochem Soc 151:A1584–A1591

    Article  CAS  Google Scholar 

  20. Ning G, White RE, Popov BN (2006) Electrochim Acta 51:2012–2022

    Article  CAS  Google Scholar 

  21. Arora P, White RE, Doyle M (1998) J Electrochem Soc 145(10):3647–3667

    Article  CAS  Google Scholar 

  22. Nyman A, Zavalis TG, Elger R (2010) J Electrochem Soc 157:A1236–A1246

    Article  CAS  Google Scholar 

  23. Sikha G, Popov BN, White RE (2004) J Electrochem Soc 15:A1104–A1114

    Article  Google Scholar 

  24. Christensen J, Newman J (2004) J Electrochem Soc 151:A1977–A1988

    Article  CAS  Google Scholar 

  25. Doyle M, Fuller TF, Newman J (1993) J Electrochem Soc 140:1526–1533

    Article  CAS  Google Scholar 

  26. Doyle M, Newman J, Gozdz AS (1996) J Electrochem Soc 143:1890–1903

    Article  Google Scholar 

  27. Bard AJ, Faulkner LR (2001) Electrochemical methods—fundamentals and applications, 3rd edn. Wiley, New York

    Google Scholar 

  28. Smith K, Wang C-Y (2006) J Power Sources 16:628–639

    Article  Google Scholar 

  29. Li SY, Xu XL, Shi XM (2012) J Power Sources 217:503–508

    Article  CAS  Google Scholar 

  30. Eshkenazi V, Peled E, Burstein L, Golodnitsky D (2004) Solid State Ionics 170:83–91

    Article  CAS  Google Scholar 

  31. Aurbach D, Levi M, Levi E (1997) J Phys Chem B 101:2195–2206

    CAS  Google Scholar 

  32. Verma P, Maire P, Novak P (2010) Electrochim Acta 55:6332–6341

    Article  CAS  Google Scholar 

  33. Shi S, Lu P, Liu Z (2012) J Am Chem Soc 134:15476–15487

    Article  CAS  Google Scholar 

  34. Bhattacharya S, Alpas AT (2012) Carbon 50:5359–5371

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under the grant number of 51106115 and the Fundamental Research Funds for the Central Universities under the grant number of WUT: 2014-IV-119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Conlisk, A.T. & Rizzoni, G. Integration of capacity fading in an electrochemical model of Li-ion batteries. J Solid State Electrochem 18, 2425–2434 (2014). https://doi.org/10.1007/s10008-014-2479-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2479-y

Keywords

Navigation