Skip to main content
Log in

Mixed oxide semiconductors based on bismuth for photoelectrochemical applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The structural and photoelectrochemical properties of mixed oxide semiconductor films of Bi-Nb-M-O (M = Al, Fe, Ga, In) were studied in order to explore their use as photoanodes in photoelectrochemical cells. These films were prepared on AISI/SAE 304 stainless steel plates by sol–gel dip-coating. The films were characterized by scanning electron microscopy—energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), and their photoelectrochemical properties were studied by open circuit potential (OCP) measurements, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). SEM micrographs show homogeneous and rough films with agglomerates on the surface. EDS analyses show that the films are composed of Bi, Nb, and M, and the agglomerates are mainly composed of Bi. XRD analyses show a predominant crystalline phase of bismuth(III) oxide (Bi2O3) and a secondary phase composed of Bi-M mixed oxides. It is noteworthy that there was no identified niobium-based crystalline phase. XPS results reveal that the films are composed by Bi(III), Nb(V), and M(III). CV results show that the electrochemical behavior is attributed only to the semiconductor films which indicate a good coating of the stainless steel support. OCP measurements show that all the films have n-type semiconductor properties and exhibited photoresponse to the visible light irradiation. LSV results show that the application of a potential higher than +0.1 V enhances the photocurrent which can be attributed to an improved charge carrier separation. The results indicate that these materials can be used in photoelectrochemical cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Aruchamy A, Aravamudan G, Subba Rao GV (1982) Semiconductor based photoelectrochemical cells for solar energy conversion—an overview. Bull Mater Sci 4:483–526

    Article  CAS  Google Scholar 

  3. Tryk DA, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–2376

    Article  CAS  Google Scholar 

  4. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  5. Zhang H, Chen G, Bahnemann DW (2009) Photoelectrocatalytic materials for environmental applications. J Mater Chem 19:5089–5121

    Article  CAS  Google Scholar 

  6. Lianos P (2011) Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. J Hazard Mater 185:575–590

    Article  CAS  Google Scholar 

  7. Ochiai T, Fujishima A (2012) Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J Photochem Photobiol C 13:247–262

    Article  CAS  Google Scholar 

  8. Li Y, Zhang JZ (2009) Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev 4:517–528

    Article  Google Scholar 

  9. Navarro RM, del Valle F, Villoria de la Mano JA, Álvarez-Galván M, Fierro J (2009) Photocatalytic water splitting under visible light. Advances in chemical engineering. Elsevier, pp. 111–143

  10. Georgieva J, Valova E, Armyanov S, Philippidis N, Poulios I, Sotiropoulos S (2012) Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2–WO3 photoanodes. J Hazard Mater 211–212:30–46

    Article  Google Scholar 

  11. Riboni F, Bettini LG, Bahnemann DW, Selli E (2013) WO3-TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catal Today 209:28–34

    Article  CAS  Google Scholar 

  12. Bian Z, Zhu J, Wang S, Cao Y, Qian X, Li H (2008) Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase. J Phys Chem C 112:6258–6262

    Article  CAS  Google Scholar 

  13. Xu J, Ao Y, Fu D, Yuan C (2008) Synthesis of Bi2O3-TiO2 composite film with high-photocatalytic activity under sunlight irradiation. Appl Surf Sci 255:2365–2369

    Article  CAS  Google Scholar 

  14. Zhao X, Liu H, Qu J (2011) Photoelectrocatalytic degradation of organic contaminants at Bi2O3/TiO2 nanotube array electrode. Appl Surf Sci 257:4621–4624

    Article  CAS  Google Scholar 

  15. Ohno T, Miyamoto Z, Nishijima K, Kanemitsu H, Xueyuan F (2006) Sensitization of photocatalytic activity of S- or N-doped TiO2 particles by adsorbing Fe3+ cations. Appl Catal A 302:62–68

    Article  CAS  Google Scholar 

  16. Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrog Energy 34:5337–5346

    Article  CAS  Google Scholar 

  17. Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211–212:3–29

    Article  Google Scholar 

  18. Zhang L, Wang W, Yang J, Chen Z, Zhang W, Zhou L, Liu S (2006) Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst. Appl Catal, A 308:105–110

    Article  CAS  Google Scholar 

  19. Gao F, Chen XY, Yin KB, Dong S, Ren Z, Yuan F, Yu T, Zou Z, Liu J (2007) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater 19:2889–2892

    Article  CAS  Google Scholar 

  20. Wang W, Li N, Chi Y, Li Y, Yan W, Li X, Shao C (2013) Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity. Ceram Int 39:3511–3518

    Article  CAS  Google Scholar 

  21. Soltani T, Entezari MH (2013) Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of rhodamine B under solar light irradiation. Chem Eng J 223:145–154

    Article  CAS  Google Scholar 

  22. Wang X, Lin Y, Ding X, Jiang J (2011) Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles. J Alloys Compd 509:6585–6588

    Article  CAS  Google Scholar 

  23. Fang J, Ma J, Sun Y, Liu Z, Gao C (2011) Synthesis of Bi3NbO7 nanoparticles with a hollow structure and their photocatalytic activity under visible light. Solid State Sci 13:1649–1653

    Article  CAS  Google Scholar 

  24. Zhang G, Yang J, Zhang S, Xiong Q, Huang B, Wang J, Gong W (2009) Preparation of nanosized Bi3NbO7 and its visible-light photocatalytic property. J Hazard Mater 172:986–992

    Article  CAS  Google Scholar 

  25. Ai Z, Ho W, Lee S (2012) A stable single-crystal Bi3NbO7 nanoplates superstructure for effective visible-light-driven photocatalytic removal of nitric oxide. Appl Surf Sci 263:266–272

    Article  CAS  Google Scholar 

  26. Wang L, Wang W, Shang M, Sun S, Yin W, Ren J, Zhou J (2010) Visible light responsive bismuth niobate photocatalyst: enhanced contaminant degradation and hydrogen generation. J Mater Chem 20:8405–8410

    Article  CAS  Google Scholar 

  27. Lin X, Huang F, Wang W, Xia Y, Wang Y, Liu M, Shi J (2008) Photocatalytic activity of a sillenite-type material Bi25GaO39. Catal Commun 9:572–576

    Article  CAS  Google Scholar 

  28. Zhang CY, Sun HJ, Chen W, Zhou J, Li B, Wang Y (2009) Hydrothermal synthesis and photo-catalytic property of Bi25FeO40 powders. Applications of Ferroelectrics. IEEE, pp 1–3

  29. Zou Z, Ye J, Arakawa H (2000) Synthesis, magnetic and electrical transport properties of the Bi2InNbO7 compound. Solid State Commun 116:259–263

    Article  CAS  Google Scholar 

  30. Zou Z, Ye J, Arakawa H (2001) Preparation, structural and optical properties of a new class of compounds, Bi2MNbO7 (M = Al, Ga, In). Mater Sci Eng B 79:83–85

    Article  Google Scholar 

  31. Zou Z, Ye J, Arakawa H (2001) Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts. J Mol Catal A Chem 168:289–297

    Article  CAS  Google Scholar 

  32. Zou Z, Ye J, Arakawa H (2003) Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. Int J Hydrog Energy 28:663–669

    Article  CAS  Google Scholar 

  33. Zou Z, Ye J, Arakawa H (2001) Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi2MNbO7 (M=Al3+, Ga3+ and In3+). Chem Phys Lett 333:57–62

    Article  CAS  Google Scholar 

  34. Zou Z, Ye J, Arakawa H (2001) Substitution effects of In 3+ by Al 3+ and Ga 3+ on the photocatalytic and structural properties of the Bi2InNbO7 photocatalyst. Chem Mater 13:1765–1769

    Article  CAS  Google Scholar 

  35. Garza-Tovar LL, Torres-Martínez LM, Rodríguez DB, Gómez R, del Angel G (2006) Photocatalytic degradation of methylene blue on Bi2MNbO7 (M = Al, Fe, In, Sm) sol–gel catalysts. J Mol Catal A Chem 247:283–290

    Article  CAS  Google Scholar 

  36. Teixeira Z, Otubo L, Gouveia RF, Alves OL (2010) Preparation and characterization of powders and thin films of Bi2AlNbO7 and Bi2InNbO7 pyrochlore oxides. Mater Chem Phys 124:552–557

    Article  CAS  Google Scholar 

  37. Ropero-Vega JL, Rosas-Barrera KL, Pedraza-Avella JA, Laverde-Cataño DA, Pedraza-Rosas JE, Niño-Gómez ME (2010) Photophysical and photocatalytic properties of Bi2MNbO7 (M=Al, In, Ga, Fe) thin films prepared by dip-coating. Mater Sci Eng B 174:196–199

    Article  CAS  Google Scholar 

  38. Rosas-Barrera KL, Ropero-Vega JL, Pedraza-Avella JA, Niño-Gómez ME, Pedraza-Rosas JE, Laverde-Cataño DA (2011) Photocatalytic degradation of methyl orange using Bi2MNbO7 (M=Al, Fe, Ga, In) semiconductor films on stainless steel. Catal Today 166:135–139

    Article  CAS  Google Scholar 

  39. Pedraza-Avella JA, Rosas-Barrera KL, Pedraza-Rosas JE, Laverde-Cataño DA (2011) Photoelectrochemical hydrogen production from aqueous solution containing cyanide using Bi2MNbO7 (M=Al, Fe, Ga, In) films on stainless steel as photoanodes. Top Catal 54:244–249

    Article  CAS  Google Scholar 

  40. Rosas-Barrera KL, Pedraza-Avella JA, Ballén-Gaitán BP, Cortés-Peña J, Pedraza-Rosas JE, Laverde-Cataño DA (2011) Photoelectrolytic hydrogen production using Bi2MNbO7 (M=Al, Ga) semiconductor film electrodes prepared by dip-coating. Mater Sci Eng B 176:1359–1363

    Article  CAS  Google Scholar 

  41. Sokolov S, Ortel E, Radnik J, Kraehnert R (2009) Influence of steel composition and pre-treatment conditions on morphology and microstructure of TiO2 mesoporous layers produced by dip coating on steel substrates. Thin Solid Films 518:27–35

    Article  CAS  Google Scholar 

  42. Iyyapushpam S, Nishanthi ST, Pathinettam Padiyan D (2013) Photocatalytic degradation of methyl orange using α-Bi2O3 prepared without surfactant. J Alloys Compd 563:104–107

    Article  CAS  Google Scholar 

  43. Weidong H, Wei Q, Xiaohong W, Xianbo D, Long C, Zhaohua J (2007) The photocatalytic properties of bismuth oxide films prepared through the sol–gel method. Thin Solid Films 515:5362–5365

    Article  Google Scholar 

  44. Brezesinski K, Ostermann R, Hartmann P, Perlich J, Brezesinski T (2010) Exceptional photocatalytic activity of ordered mesoporous β-Bi2O3 thin films and electrospun nanofiber mats. Chem Mater 22:3079–3085

    Article  CAS  Google Scholar 

  45. Gurunathan K (2004) Photocatalytic hydrogen production using transition metal ions-doped γ-Bi2O3 semiconductor particles. Int J Hydrog Energy 29:933–940

    Article  CAS  Google Scholar 

  46. Xia J, Masaki N, Jiang K, Yanagida S (2007) Sputtered Nb2O5 as a novel blocking layer at conducting glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells. J Phys Chem C 111:8092–8097

    Article  CAS  Google Scholar 

  47. Innocenzi P, Martucci A, Armelao L, Licoccia S, Di Vona M, Traversa E (2000) Sol–gel synthesis of β-Al2TiO5 thin films at low temperature. Chem Mater 12:517–524

    Article  CAS  Google Scholar 

  48. Fujii T, De Groot FMF, Sawatzky GA, Voogt F, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59:3195–3202

    Article  CAS  Google Scholar 

  49. Valet M, Hoffman DM (2001) Synthesis of homoleptic gallium alkoxide complexes and the chemical vapor deposition of gallium oxide films. Chem Mater 13:2135–2143

    Article  CAS  Google Scholar 

  50. Poznyak SK, Kulak AI (2000) Characterization and photoelectrochemical properties of nanocrystalline In2O3 film electrodes. Electrochim Acta 45:1595–1605

    Article  CAS  Google Scholar 

  51. Vivier V, Régis A, Sagon G, Nedelec J, Yu L, Cachet-Vivier C (2001) Cyclic voltammetry study of bismuth oxide Bi2O3 powder by means of a cavity microelectrode coupled with Raman microspectrometry. Electrochim Acta 46:907–914

    Article  CAS  Google Scholar 

  52. Aroutiounian VM, Arakelyan VM, Shahnazaryan GE (2005) Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol Energy 78:581–592

    Article  CAS  Google Scholar 

  53. Lei C-X, Zhou H, Wang C, Feng Z-D (2013) Self-assembly of ordered mesoporous TiO2 thin films as photoanodes for cathodic protection of stainless steel. Electrochim Acta 87:245–249

    Article  CAS  Google Scholar 

  54. Straka L, Yagodzinskyy Y, Kawakami H, Romu J, Ilola R, Hänninen H (2008) Open-circuit potential as an indicator of damage of atomic layer deposited TiO2 on AISI 304 stainless steel. Thin Solid Films 517:641–647

    Article  CAS  Google Scholar 

  55. Memming R (1988) Photoelectrochemical solar energy conversion. In: Steckhan E (ed) Electrochemistry II. Springer, Berlin, pp 79–112

    Chapter  Google Scholar 

  56. Xu Y, Schoonen MA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556

    CAS  Google Scholar 

  57. De Tacconi NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa R, Basit N, Rajeshwar K (2006) Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. J Phys Chem B 110:25347–25355

    Article  Google Scholar 

  58. McShane CM, Choi K-S (2009) Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J Am Chem Soc 131:2561–2569

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been carried out with the financial support of Universidad Industrial de Santander (DIEF Ciencias, Project 5185). J.L. Ropero-Vega thanks COLCIENCIAS for the doctoral scholarship in the frame of the program “Convocatoria nacional para estudios a nivel de doctorado en Colombia—año 2009”. The authors thank Jonathan I. Avila for the XPS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Ropero-Vega.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1040 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ropero-Vega, J.L., Meléndez, A.M., Pedraza-Avella, J.A. et al. Mixed oxide semiconductors based on bismuth for photoelectrochemical applications. J Solid State Electrochem 18, 1963–1971 (2014). https://doi.org/10.1007/s10008-014-2420-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2420-4

Keywords

Navigation