Skip to main content
Log in

An EQCM study on the influence of saccharin on the corrosion properties of nanostructured cobalt and cobalt-iron alloy coatings

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured cobalt (Co) and cobalt-iron (CoFe) alloy coatings were electrodeposited from sulfate solutions in the presence and absence of saccharin. The effects of saccharin on the corrosion behavior of Co and CoFe alloy coatings were investigated using the electrochemical quartz crystal microbalance (EQCM) technique coupled with cyclic voltammetry (CV) measurements. Saccharin was added to the electrolyte as a grain refiner and brightener. Interestingly, opposite corrosion behaviors were found for all nanostructured coatings in 0.1 M H2SO4 and 0.1 M NaOH. The use of saccharin as an additive in the plating solution accelerated the anodic reaction for all deposits in acidic medium. The mass decreases while dissolution rate increased with higher saccharin concentration. Meanwhile, formation of a thick passive film on the Co electrode surface were enhanced while a hindering effect was observed for CoFe alloy coatings deposited in the presence of saccharin in alkaline solution. The anodic and cathodic curves obtained from potentiodynamic polarization experiments were also in agreement with the EQCM results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Romankiw LT, Croll I, Hatzakis M (1970) IEEE Trans Magn 3:597–601

    Article  Google Scholar 

  2. Osaka T, Takai M, Ohasi K, Yamada K (1998) Nature 392:796–798

    Article  CAS  Google Scholar 

  3. Osaka T, Asahi T, Kawaji J, Yokoshima T (2005) Electrochim Acta 50:4576–4585

    Article  CAS  Google Scholar 

  4. Tabakovic I, Reimer S, Inturi V, Jallen P, Thayer A (2000) J Electrochem Soc 147:219–226

    Article  CAS  Google Scholar 

  5. Osaka T, Sawaguchi T, Mizutani F, Yokoshima T, Takai M, Okinaka Y (1999) J Electrochem Soc 146:3295–3299

    Article  CAS  Google Scholar 

  6. Brankovic SR, Vasiljevic N, Dimitrov N (2010) Applications to magnetic recording and microelectronic technologies, modern electroplating. Wiley, Houston, p 573

    Google Scholar 

  7. Reimer S, Gong J, Sun M, Tabakovic I (2009) J Electrochem Soc 159:D439–D447

    Article  Google Scholar 

  8. Tabakovic I, Gong J, Riemer S, Venkatasamy V, Kief M (2010) Electrochim Acta 55:9035–9041

    Article  CAS  Google Scholar 

  9. Buessherman C (1994) Prog Surf Sci 46:335–375

    Article  CAS  Google Scholar 

  10. Kwon H, Gewirth AA (2007) J Electrochem Soc 154:D577–D583

    Article  CAS  Google Scholar 

  11. Kouncheva M, Raichevski G, Vitkova S (1987) Surf Coat Technol 31:137–142

    Article  Google Scholar 

  12. Rogers GT, Ware MJ, Fellows RV (1960) J Electrochem Soc 107:677–682

    Article  CAS  Google Scholar 

  13. Oniciu L, Muresan L (1991) J Appl Electrochem 21:565–574

    Article  CAS  Google Scholar 

  14. Brankovic SR, Vasiljevic N, Klemmer TJ, Johns EC (2005) J Electrochem Soc 152:C196–C202

    Article  CAS  Google Scholar 

  15. Frankel GS, Brusic V, Schad RG, Chang JW (1993) Corros Sci 35:63–71

    Article  CAS  Google Scholar 

  16. Attarzadeh N, Raeissi K, Golozar MA (2008) Prog Org Coat 63:167–174

    Article  CAS  Google Scholar 

  17. Sayar N, Bahrololoom P (2009) J Appl Electrochem 39:2489–2496

    Article  Google Scholar 

  18. Lallemand F, Ricq L, Berçot P, Pagetti J (2002) Electrochim Acta 47:4149–4156

    Article  CAS  Google Scholar 

  19. Lallemand F, Ricq L, Wery M, Berçot P, Pagetti P (2004) J Appl Surf Sci 228:326–333

    Article  CAS  Google Scholar 

  20. Makino K, Kawakami S, Orihara S, Sakai S (1973) IEEE Trans Magn 9:500–504

    Article  CAS  Google Scholar 

  21. Ricq L, Lallemand F, Gigandet MP, Pagetti J (2001) Surf Coat Technol 138:278–283

    Article  CAS  Google Scholar 

  22. George J, Bae SE, Litvinov D, Rantschler J, Brankovic SR (2008) J Electrochem Soc 155:D589–D594

    Article  CAS  Google Scholar 

  23. Kim JW, Lee JY, Park SM (2004) Langmuir 20:459–466

    Article  CAS  Google Scholar 

  24. Rahmouni K, Keddam M, Srhiri A, Takenouti H (2005) Corros Sci 47:3249–3266

    Article  CAS  Google Scholar 

  25. Kologo S, Eyraud M, Bonou L, Vacandio F, Massiani Y (2007) Electrochim Acta 52:3105–3113

    Article  CAS  Google Scholar 

  26. Brankovic SR (2012) Electrochim Acta 84:139–144

    Article  CAS  Google Scholar 

  27. Rashidi AM, Amadeh A (2010) J Mater Sci Technol 26:82–86

    Article  CAS  Google Scholar 

  28. Pellicer E, Varea A, Pané S, Sivaraman KM, Nelson BJ, Suriñach S, Baró MD, Sort J (2011) Surf Coat Technol 205:5285–5293

    Article  CAS  Google Scholar 

  29. Srivastava M, William Grips VK, Rajam KS (2007) Appl Surf Sci 253:3814–3824

    Article  CAS  Google Scholar 

  30. Shirani A, Momenzadeh M, Sanjab S (2012) Surf Coat Technol 206:2870–2876

    Article  CAS  Google Scholar 

  31. Wu BYC (2002) Synthesis and characterization of nanocrystalline alloys in the binary Ni-Co system. M. Sc. Thesis, University of Toronto

  32. Li Y, Wang F, Liu G (2004) Corros 60:891–896

    Article  CAS  Google Scholar 

  33. Montes-Rojas A, Torres-Rodríguez LM, Nieto-Delgado C (2007) New J Chem 31:1769–1776

    Article  CAS  Google Scholar 

  34. Martín AJ, Chaparro AM, Daza L (2007) J Power Sources 169:65–70

    Article  Google Scholar 

  35. Matsushima JT, Trivinho-Strixino F, Pereira EC (2006) Electrochim Acta 51:1960–1966

    Article  CAS  Google Scholar 

  36. Lafouresse M, Medvedev A, Kutuso K, Schwarzacher W, Masliy A (2007) Russ J Electrochem 43:856–858

    Article  CAS  Google Scholar 

  37. Kim SH, Sohn HJ, Joo YC (2005) Surf Coat Technol 199:43–48

    Article  CAS  Google Scholar 

  38. Xinwei C, Weixing C (2008) J Electrochem Soc 155:K133–K139

    Article  Google Scholar 

  39. Bockris JO, Drazic D, Despic AR (1968) Electrochim Acta 4:325–361

    Article  Google Scholar 

  40. Zech N, Podlaha EJ, Landolt D (1999) J Electrochem Soc 146:2892–2900

    Article  CAS  Google Scholar 

  41. Sasaki KY, Talbot JB (2000) J Electrochem Soc 147:189–197

    Article  CAS  Google Scholar 

  42. Oudar J, Marcus P (1979) Appl Surf Sci 3:48–67

    Article  CAS  Google Scholar 

  43. Marcus P, Oudar J (1985) Hydrogen degradation of ferrous alloys. In: Oriani RA, Hirth JP, Smialowski M (eds) Noyes, Park Ridge, NJ, Chapter 3:36–77

  44. Epelboin I, Keddam M (1970) J Electrochem Soc 117:1052–1056

    Article  Google Scholar 

  45. Epelboin I, Keddam M (1972) Electrochim Acta 17:177–186

    Article  CAS  Google Scholar 

  46. Liu C, Bi Q, Leyland A, Matthews A (2003) Corros Sci 45:1243–1256

    Article  CAS  Google Scholar 

  47. Tan BJ, Klabunde KJ, Sherwood PMA (1991) J Am Chem Soc 113:855–861

    Article  CAS  Google Scholar 

  48. Tabakovic I, Reimer S, Tabakovic K, Sun M, Kief M (2006) J Electrochem Soc 153:C586–C593

    Article  CAS  Google Scholar 

  49. Wang S, Zhang B, Zhao C, Li S, Zhang M, Yan L (2011) Appl Surf Sci 257:3358–3362

    Article  CAS  Google Scholar 

  50. Wagner CD (1979) Handbook of X-ray photoelectron spectroscopy, Perkin Elmer Corp.

  51. Tsutsumi Y, Nishimura D, Doi H, Nomura N, Hanawa T (2010) Acta Biomater 6:4161–4166

    Article  CAS  Google Scholar 

  52. Bhargava G, Gouzman I, Chun CM, Ramanarayanan TA, Bernasek SL (2007) Appl Surf Sci 253:4322–4329

    Article  CAS  Google Scholar 

  53. Grosvenor AP, Kobe BA, McIntyre NS (2004) Surf Sci 572:217–227

    Article  CAS  Google Scholar 

  54. Popov BN, Yin KM, White RE (1993) J Electrochem Soc 140:1321–1330

    Article  CAS  Google Scholar 

  55. Nakanishi T, Ozaki M, Nam HS, Yokihiko T, Osaka T (2001) J Electrochem Soc 148:C627–C631

    Article  CAS  Google Scholar 

  56. Lallemand F, Comte D, Ricq L, Renaux P, Pagetti J, Dieppedale C, Gaud P (2004) Appl Surf Sci 225:59–71

    Article  CAS  Google Scholar 

  57. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Appl Phys Lett 81:454–456

    Article  CAS  Google Scholar 

  58. Ohno T, Mitsui T, Matsumura M (2003) Chem Lett 32:364–365

    Article  CAS  Google Scholar 

  59. Sakthivel S, Janczarek M, Kisch H (2004) J Phys Chem B 108:19384–19387

    Article  CAS  Google Scholar 

  60. Mills P, Sullivan J (2000) J Phys D Appl Phys 16:723–732

    Article  Google Scholar 

  61. Schmutz P, Landolt D (1999) Corros Sci 41:2143–2163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Sciences Engineering Research Council of Canada (NSERC). A scholarship granted to Nik Rozlin by the Ministry of Higher Education, Malaysia and Universiti Teknologi MARA is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nik Rozlin Nik Masdek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nik Masdek, N.R., Alfantazi, A.M. An EQCM study on the influence of saccharin on the corrosion properties of nanostructured cobalt and cobalt-iron alloy coatings. J Solid State Electrochem 18, 1701–1716 (2014). https://doi.org/10.1007/s10008-014-2417-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2417-z

Keywords

Navigation