Skip to main content
Log in

Influence of the magnitude and direction of electric field on the transport and growth property of deposited polyaniline films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) films were deposited by electrochemical polymerization of aniline monomer on a fluorine-doped glass substrate at room temperature under different electric field directions. The as-synthesized PANI films obtained at different growth cycles were characterized by AC impedance spectroscopy and scanning electron microscopy (SEM). The results revealed that the film morphology, transport kinetics, and electrical properties are strongly dependent on the electric field direction and magnitude of the applied field during electropolymerization. The SEM morphology and AC impedance (modulus spectroscopy) indicate that a more homogeneous, high-porous, and conducting PANI film is induced by horizontal electric field direction (HEFD) electrodeposition, whereas the modulus spectroscopy of the PANI film deposited by vertical electric field direction (VEFD) reveals that VEFD deposition favours two-dimensional growth of PANI. The obtained polymer is more of dielectric in nature due to preferable dendritic growth which is supported by SEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bhattacharjya D, Mukhopadhyay I (2012) Controlled growth of polyaniline fractals on HOPG through potentiodynamic electropolymerization. Langmuir 28:5893–5899

    Article  CAS  Google Scholar 

  2. Wessling B (1998) Dispersion as the link between basic research and commercial applications of conductive polymers (polyaniline). Synth Met 93:143–154

    Article  CAS  Google Scholar 

  3. Wang Y, Jing X (2004) Preparation of an epoxy/polyaniline composite coating and its passivation effect on cold rolled steel. Polym J 36:374–379

    Article  CAS  Google Scholar 

  4. Wang Y, Jing X (2005) Intrinsically conducting polymers for electromagnetic interference shielding. Polym Adv Technol 16:344–351

    Article  CAS  Google Scholar 

  5. Chandrakanthi N, Careem MA (2000) Thermal stability of polyaniline. Polym Bull 44:101–108

    Article  CAS  Google Scholar 

  6. Persaud K (2005) Polymers for chemical sensing. Mater Today 8:38–44

    Article  CAS  Google Scholar 

  7. Tang Z, Liu S, Wang Z, Dong S, Wang E (2000) Electrochemical synthesis of polyaniline nanoparticles. Electrochem Commun 2:32–35

    Article  CAS  Google Scholar 

  8. Chen WC, Wen TC, Gopalan A (2002) Negative capacitance for polyaniline: an analysis via electrochemical impedance spectroscopy. Synth Met 128:179–189

    Article  CAS  Google Scholar 

  9. Chen WC, Wen TC, Hu CC, Gopalan A (2002) Identification of inductive behavior for polyaniline via electrochemical impedance spectroscopy. Electrochim Acta 47:1305–1315

    Article  CAS  Google Scholar 

  10. Kim YT, Yang H, Bard AJ (1991) Electrochemical control of polyaniline morphology as studied by scanning tunneling microscopy. J Electrochem Soc 138:L71–L74

    Article  CAS  Google Scholar 

  11. Stilwell DE, Park SM (1988) Electrochemical studies on growth properties of polyaniline. J Electrochem Soc 135:2254–2262

    Article  CAS  Google Scholar 

  12. Gholamian M, Contractor AQ (1990) Oxidation of formic acid at platinum microparticles dispersed in a polyaniline matrix: influence of long-range order and metal-polymer interaction. J Electroanal Chem 289:69–83

    Article  CAS  Google Scholar 

  13. Ohsaka T, Ohnuki Y, Oyama N, Katagiri G, Kamisako K (1984) IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerization of aniline. J Electroanal Chem 161:399–405

    Article  CAS  Google Scholar 

  14. Kobayashi T, Yoneyama H, Tamura H (1984) Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes. J Electroanal Chem 177:281–291

    Article  CAS  Google Scholar 

  15. Genies EM, Tsintavis C (1985) Redox mechanism and electrochemical behaviour or polyaniline deposits. J Electroanal Chem 195:109–128

    Article  CAS  Google Scholar 

  16. Kitani A, Yano J, Sasaki K (1986) ECD materials for the three primary colors developed by polyanilines. J Electroanal Chem 209:227–232

    Article  CAS  Google Scholar 

  17. Genies EM, Lapkowski M (1987) Spectroelectrochemical study of polyaniline versus potential in the equilibrium state. J Electroanal Chem 220:67–82

    Article  CAS  Google Scholar 

  18. Gabrielli C, Keddam M, Nadi N, Perrot H (2000) Ions and solvent transport across conducting polymers investigated by ac electrogravimetry. Application to polyaniline. J Electroanal Chem 485:101–113

    Article  CAS  Google Scholar 

  19. Bobacka J, Lewenstam A, Ivaska A (2000) Electrochemical impedance spectroscopy of oxidized poly (3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J Electroanal Chem 489:17–27

    Article  CAS  Google Scholar 

  20. Hu CC, Chu CH (2001) Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors—effects of film coverage/thickness and anions. J Electroanal Chem 503:105–116

    Article  CAS  Google Scholar 

  21. Yang HJ, Bard AJ (1992) The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. J Electroanal Chem 339:423–449

    Article  CAS  Google Scholar 

  22. Deslouis C, Musiani MM, Tribollet B (1994) AC impedance study of transport processes in polyaniline membranes. J Phys Chem 98:2936–2940

    Article  CAS  Google Scholar 

  23. Popkirov GS, Barsoukov E, Schindler RN (1997) Investigation of conducting polymer electrodes by impedance spectroscopy during electropolymerization under galvanostatic conditions. J Electroanal Chem 425:209–216

    Article  CAS  Google Scholar 

  24. Vorotyntsev MA, Badiali JP, Inzelt G (1999) Electrochemical impedance spectroscopy of thin films with two mobile charge carriers: effects of the interfacial charging. J Electroanal Chem 472:7–19

    Article  CAS  Google Scholar 

  25. Gazotti WA, Matencio T, Depaoli MA (1997) Electrochemical impedance spectroscopy studies for chemically prepared poly (O-methoxyaniline) doped with functionalized acids. Electrochim Acta 43:457–464

    Article  Google Scholar 

  26. Lang G, Inzelt G (1999) An advanced model of the impedance of polymer film electrodes. Electrochim Acta 44:2037–2051

    Article  CAS  Google Scholar 

  27. Mansfeld F, Lin S, Chen YC, Shih H (1988) Minimization of high–frequency phase shifts in impedance measurements. J Electrochem Soc 135:906–907

    Article  CAS  Google Scholar 

  28. Venkataraman BH, Varma KBR (2005) Microstructural, dielectric, impedance and electric modulus studies on vanadium-doped and pure strontium bismuth niobate (SrBi2Nb2O9) ceramics. J Mater Sci Mater Electron 16:335–344

    Article  CAS  Google Scholar 

  29. Lang G, Inzelt G (1991) Some problems connected with impedance analysis of polymer film electrodes: effect of the film thickness and the thickness distribution. Electrochim Acta 36:847–854

    Article  CAS  Google Scholar 

  30. Lang G, Bacskai J, Inzelt G (1993) Impedance analysis of polymer film electrodes. Electrochim Acta 38:773–780

    Article  CAS  Google Scholar 

  31. Tanguy J, Mermilliod N, Hoclet M (1987) Capacitive charge and noncapacitive charge in conducting polymer electrodes. J Electrochem Soc 134:795–802

    Article  CAS  Google Scholar 

  32. Komura T, Yamaguti T, Takahasi K (1996) Impedance study of the charge transport at poly-O-phenylenediamine film electrodes. J Electrochim Acta 41:2865–2870

    Article  CAS  Google Scholar 

  33. Rubinstein I, Sabatani E, Rishpon J (1987) Electrochemical impedance analysis of polyaniline films on electrodes. J Electrochem Soc 134:3078–3083

    Article  CAS  Google Scholar 

  34. Pruneanu S, Veress E, Marian I, Oniciu L (1999) Characterization of polyaniline by cyclic voltammetry and UV-Vis absorption spectroscopy. J Mater Sci 34:2733–2739

    Article  CAS  Google Scholar 

  35. Nunziante P, Pistoia G (1989) Factors affecting the growth of thick polyaniline films by the cyclic voltammetry technique. Electrochim Acta 34:223–228

    Article  CAS  Google Scholar 

  36. Matsushita M, Kuramitz H, Tanaka S (2005) Electrochemical oxidation for low concentration of aniline in neutral pH medium: application to the removal of aniline based on the electrochemical polymerization on a carbon fiber. Environ Sci Technol 39:3805–3810

    Article  CAS  Google Scholar 

  37. Kobayashi T, Yoneyama H, Tamura H (1984) Polyaniline film-coated electrodes as electrochromic display devices. J Electroanal Chem 161:419–423

    Article  CAS  Google Scholar 

  38. Radosevic VH, Kvastek K (2007) Analysis of high-frequency distortions in impedance spectra of conducting polyaniline film modified Pt-electrode measured with different cell configurations. Electrochim Acta 52:5377–5391

    Article  Google Scholar 

  39. Ravikiran YT, Lagare MT, Sairam M, Mallikarjuna NN, Sreedhar B, Manohar S, MacDiarmid AG, Aminabhavi TM (2006) Synthesis, characterization and low frequency AC conduction of polyaniline/niobium pentoxide composites. Synth Met 156:1139–1147

    Article  CAS  Google Scholar 

  40. Grzeszczuk M, Olszak GZ (1993) Ionic transport in polyaniline film electrodes: an impedance study. J Eelctroanal Chem 359:161–174

    Article  CAS  Google Scholar 

  41. Zhu D, Zhang J, Xu C, Matsuo M (2011) The frequency-dependence conduction of polyaniline based on their para-crystalline structures. Synth Met 161:1820–1827

    Article  CAS  Google Scholar 

  42. Lee HT, Chuang KR, Chen SA, Wei PK, Hsu JH, Fann W (1995) Conductivity relaxation of 1-methyl-2-pyrrolidone-plasticized polyaniline film. Macromolecules 28:7645–7652

    Article  CAS  Google Scholar 

  43. Ray DK, Himanshu AK, Sinha TP (2007) Structural and low frequency dielectric studies of conducting polymer nanocomposites. Indian J Pur Appl Phys 45:692–699

    CAS  Google Scholar 

  44. Han MG, IM S (2001) Dielectric spectroscopy of conductive polyaniline salt films. J Appl Polym Sci 82:2760–2769

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Puyam Singh, Central Salt and Marine Chemical Institute (CSMCSIR), Bhavnagar for carrying out the scanning electron microscopy of our samples. We are thankful to the Department of Science and Technology (DST), Government of India for the financial support under the INSPIRE fellowship scheme for PhD studies of Kavita Pandey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, K., Yadav, P. & Mukhopadhyay, I. Influence of the magnitude and direction of electric field on the transport and growth property of deposited polyaniline films. J Solid State Electrochem 18, 453–463 (2014). https://doi.org/10.1007/s10008-013-2270-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2270-5

Keywords

Navigation