Skip to main content
Log in

Effect of surface modification of zinc oxide on the electrochemical performances of [Ni4Al(OH)10]OH electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Surface modification of zinc oxide on the [Ni4Al(OH)10]OH has been performed by a chemical surface precipitation method. Inductively coupled plasma measurements show that the amount of ZnO of prepared samples increases with the increase of initial concentration of Zn2+ in the mother solution. Powder X-ray diffraction measurements and scanning electron microscope images show that the modification of ZnO has little effects on the lattice parameters and the particle sizes of the [Ni4Al(OH)10]OH, but does change the morphology. The charge–discharge cycles results show that the deterioration rate of discharge capacity for the electrode with ZnO is only 4.0 % after 255 cycles, which is lower than that of electrode without ZnO (8.5 %); meanwhile, the maximal numbers of exchanged electrons per nickel atom for the electrodes with ZnO are basically over 1.83, which are higher than that of the electrode without ZnO (1.73), indicating that the modification of ZnO can improve the utilization of active material. In addition, the cyclic voltammogram tests results show that the modification of ZnO not only improves electrochemical cyclic reversibility but also elevates the oxygen evolution potential. Electrochemical impedance spectroscopy measurements show that the modification of ZnO can lower the double layer capacitance and the charge transfer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lei LX, Hu M, Gao XR, Sun YM (2008) Electrochim Acta 54:671–676

    Article  CAS  Google Scholar 

  2. Han TA, Tu JP, Wu JB, Li Y, Yuan YF (2006) J Electrochem Soc 153:A738–A742

    Article  CAS  Google Scholar 

  3. Cheng F, Liang J, Tao Z, Chen J (2011) Adv Mater 23:1695–1715

    Article  CAS  Google Scholar 

  4. Gao XP, Yang HX (2010) Energy Environ Sci 3:174–189

    Article  CAS  Google Scholar 

  5. Rocha MA, Winnischofer H, Araki K, Anaissi FJ, Toma HE (2011) J Nanosci Nanotechno 11:3985–3996

    Article  CAS  Google Scholar 

  6. Aradi T, Hornok V, Dekany I (2008) Colloids Surfaces A 319:116–121

    Article  CAS  Google Scholar 

  7. Gao XR, Lei LX, Lv CG, Sun YM, Zheng HG, Cui YP (2008) J Solid State Chem 181:1776–1781

    Article  CAS  Google Scholar 

  8. Kun R, Balazs M, Dekany I (2005) Colloid Surface A 265:155–162

    Article  CAS  Google Scholar 

  9. Murayama N, Maekawa I, Ushiro H, Miyoshi T, Shibata J, Valix M (2012) Int J Miner Process 110–111:46–52

    Article  Google Scholar 

  10. Patzko A, Kun R, Hornok V, Dekany I, Engelhardt T, Schall N (2005) Colloid Surface A 265:64–72

    Article  CAS  Google Scholar 

  11. Wang CY, Zhong S, Bradhurst DH, Liu HK, Dou SX (2002) J Alloy Compd 330:802–805

    Article  Google Scholar 

  12. Wang H, Tang ZY, Li JX (2010) J Solid State Electrochem 14:1525–1531

    Article  CAS  Google Scholar 

  13. Hu M, Lei LX (2007) J Solid State Electrochem 11:847–852

    Article  CAS  Google Scholar 

  14. Hu M, Gao XR, Lei L, Sun YM (2009) J Phys Chem C 113:7448–7455

    Article  CAS  Google Scholar 

  15. Hu M, Yang ZY, Lei LX, Sun YM (2011) J Power Sources 196:1569–1577

    Article  CAS  Google Scholar 

  16. Hu M, Lei LX, Chen JX, Sun YM (2011) Electrochim Acta 56:2862–2869

    Article  CAS  Google Scholar 

  17. Chen H, Wang JM, Pan T, Xiao HM, Zhang JQ, Cao CN (2002) Int J Hydrogen Energ 27:489–496

    Article  CAS  Google Scholar 

  18. Dixit M, Kamath PV, Gopalakrishnan J (1999) J Electrochem Soc 146:79–82

    Article  CAS  Google Scholar 

  19. Caravaggio GA, Detellier C, Wronski Z (2001) J Mater Chem 11:912–921

    Article  CAS  Google Scholar 

  20. Tessier C, Guerlou-Demourgues L, Faure C, Basterreix M, Nabias G, Delmas C (2000) Solid State Ionics 133:11–23

    Article  CAS  Google Scholar 

  21. Tessier C, Faure C, Guerlou-Demourgues L, Denage C, Nabias G, Delmas C (2002) J Electrochem Soc 149:A1136–A1145

    Article  CAS  Google Scholar 

  22. Begum SN, Muralidharan VS, Basha CA (2009) Int J Hydrogen Energ 34:1548–1555

    Article  CAS  Google Scholar 

  23. Kagunya W, Baddour-Hadjean R, Kooli F, Jones W (1998) Chem Phys 236:225–234

    Article  CAS  Google Scholar 

  24. Wongariyakawee A, Schaeffel F, Warner JH, O'Hare D (2012) J Mater Chem 22:7751–7756

    Article  CAS  Google Scholar 

  25. He XM, Ren JG, Li W, Jiang CY, Wan CR (2006) Electrochim Acta 51:4533–4536

    Article  CAS  Google Scholar 

  26. Mi X, Gao XP, Jiang CY, Geng MM, Yan J, Wan CR (2004) Electrochim Acta 49:3361–3366

    Article  CAS  Google Scholar 

  27. Ren JX, Yan J, Zhou Z, Wang XJ, Gao XP (2006) Int J Hydrogen Energ 31:71–76

    Article  CAS  Google Scholar 

  28. He XM, Wang L, Li W, Jiang CY, Wan CR (2006) J Power Sources 158:1480–1483

    Article  CAS  Google Scholar 

  29. Hu WK, Gao XP, Geng MM, Gong ZX, Noreus D (2005) J Phys Chem B 109:5392–5394

    Article  CAS  Google Scholar 

  30. Fierro C, Zallen A, Koch J, Fetcenko MA (2006) J Electrochem Soc 153:A492–A496

    Article  CAS  Google Scholar 

  31. Zhang ZJ, Zhu YJ, Bao J, Lin XR, Zheng HZ (2011) J Alloy Compd 509:7034–7037

    Article  CAS  Google Scholar 

  32. Liu B, Yuan HT, Zhang YS (2004) Int J Hydrogen Energ 29:453–458

    Article  CAS  Google Scholar 

  33. Armstrong RD, Charles EA (1989) J Power Sources 27:15–27

    Article  CAS  Google Scholar 

  34. Zimerman AH, Effa PK (1984) J Electrochem Soc 131:709–713

    Article  Google Scholar 

  35. Rammelt U, Reinhard G (1990) Electrochim Acta 35:1045–1049

    Article  CAS  Google Scholar 

  36. Brug GJ, Vandeneeden ALG, Sluytersrehbach M, Sluyters JH (1984) J Electroanal Chem 176:275–295

    Article  CAS  Google Scholar 

  37. Zhao YL, Wang JM, Chen H, Pan T, Zhang JQ, Cao CN (2004) Electrochim Acta 50:91–98

    Article  Google Scholar 

  38. Cheng J, Wen YH, Cao GP, Yang YS (2011) J Power Sources 196:1589–1592

    Article  CAS  Google Scholar 

  39. Hu B, Chen SF, Liu SJ, Wu QS, Yao WT, Yu SH (2008) Chem-Eur J 14:8928–8938

    Article  CAS  Google Scholar 

  40. Li YW, Yao JH, Liu CJ, Zhao WM, Deng WX, Zhong SK (2010) Int J Hydrogen Energ 35:2539–2545

    Article  CAS  Google Scholar 

  41. Maier J (2005) Nat Mater 4:805–815

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Science Foundation of China (no. 51202054, 21206026, and 81271665), Natural Science Foundation of Hebei Province (no. B2012402006 and B2012402011), and Handan City Science and Technology Research and Development Project of China (no. 1221120095-4) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaorui Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Lei, L., Chen, L. et al. Effect of surface modification of zinc oxide on the electrochemical performances of [Ni4Al(OH)10]OH electrode. J Solid State Electrochem 18, 29–38 (2014). https://doi.org/10.1007/s10008-013-2226-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2226-9

Keywords

Navigation