Skip to main content
Log in

A modified hierarchical porous carbon for lithium/sulfur batteries with improved capacity and cycling stability

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A hierarchical porous carbon material as the conductive matrix in the sulfur cathode for rechargeable lithium batteries is prepared by an in situ two-step activation method using sucrose as the carbon source, CaCO3 as the template, and (CH3COO)2Cu·H2O (Cu(Ac)2) as the additive. The microstructure and morphology of the activated porous sulfur–carbon composite is characterized by means of X-ray diffraction, N2 adsorption–desorption, and scanning electron microscopy. The functioning mechanism of the additive on the pore formation is investigated using thermogravimetric analysis. Our results establish that thermal decomposition of the nano-CaCO3 template results in the formation of the hierarchical porous carbon structure, and addition of Cu(Ac)2 influences the carbonization process in an un-homogeneous way through the copper ion–sucrose reaction, resulting in the volume increment of small mesopores. The sample obtained shows better sulfur dispersion in the active porous carbon than that synthesized without Cu(Ac)2 involvement, which is attributable to the modified pore structure and enlarged pore volume. Thus, a better utilization of sulfur is achieved and the initial discharge capacity increases from 1,287 to 1,397 mAh g−1. Furthermore, the Li-S battery shows improved cycle stability because of enhanced interaction between the sulfur and the small mesopore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J EIectrochem Soc 126:523–527

    Article  CAS  Google Scholar 

  2. Peramunage D, Licht S (1993) A solid sulfur cathode for aqueous batteries. Science 261:1029–1032

    Article  CAS  Google Scholar 

  3. Novak P, Muller K, Santhanam KSV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97:207–281

    Article  CAS  Google Scholar 

  4. Shim J, Striebel KA, Cairns EJ (2002) The lithium/sulfur rechargeable cell–Effects of electrode composition and solvent on cell performance. J Electrochem Soc 149:A1321–A1325

    Google Scholar 

  5. Bai J, Lu B, Bo X, Guo L (2010) Electrochemical property and electroanalytical application of large mesoporous carbons. Electrochem Commun 12:1563–1567

    Article  CAS  Google Scholar 

  6. Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11:4288–4294

    Article  CAS  Google Scholar 

  7. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed 50:5904–5908

    Article  CAS  Google Scholar 

  8. Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531–1537

    Article  CAS  Google Scholar 

  9. Liang C, Dai S (2006) Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J Am Chem Soc 128:5316–5317

    Article  CAS  Google Scholar 

  10. Li K, Luo Y, Yu Z, Deng M, Li D, Meng Q (2009) Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochem Commun 11:1346–1349

    Article  CAS  Google Scholar 

  11. Li L, Li LY, Guo XD, Zhong BH, Chen YX, Tang Y (2013) Synthesis and electrochemical performance of sulfur-carbon composite cathode for lithium-sulfur batteries. J Solid State Electrochem 17:115–119

    Article  CAS  Google Scholar 

  12. Ding B, Zhang XG, Shen LF, Xu GY, Nie P, Yuan CZ (2013) Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries. Chem Eur J 19:1013–1019

    Article  CAS  Google Scholar 

  13. Evers S, Yim T, Nazar LF (2012) Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery. J Phys Chem C 116:19653–19658

    Article  CAS  Google Scholar 

  14. Chen S, Zhai Y, Xu G, Jiang Y, Zhao D, Li J, Huang L, Sun S (2011) Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochim Acta 56:9549–9555

    Article  CAS  Google Scholar 

  15. Ji X, Lee K, Nazar L (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries Nat Mater 8:500–506

    Article  CAS  Google Scholar 

  16. Lai C, Gao X, Zhang B, Yan T, Zhou Z (2009) Synthesis and electrochemical performance of sulfur-highly porous carbon composites. J Phys Chem C 113:4712–4716

    Article  CAS  Google Scholar 

  17. Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647

    Article  CAS  Google Scholar 

  18. Ji L, Rao M, Aloni S, Wang L, Cairns EJ, Zhang Y (2011) Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ Sci 4:5053–5059

    Article  CAS  Google Scholar 

  19. Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133:18522–18525

    Article  CAS  Google Scholar 

  20. Liang C, Dudney NJ, Howe JY (2009) Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater 21:4724–4730

    Article  CAS  Google Scholar 

  21. Wang D, Zhou G, Li F, Wu K, Lu G, Cheng H, Gentle I (2012) A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys Chem Chem Phys 14:8703–8710

    Article  CAS  Google Scholar 

  22. Zhao C, Wang W, Yu Z, Zhang H, Wang A, Yang Y (2010) Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities. J Mater Chem 20:976–980

    Article  Google Scholar 

  23. Xu B, Wang G, Cao G, Wu F (2010) Easy synthesis of mesoporous carbon using nano-CaCO3. Carbon 48:2377–2380

    Google Scholar 

  24. Zhao C, Wang W, Liu R, Yang Y (2010) LMC/S composite synthesized by vacuum impregnation at normal temperature. Battery 40:6–9

    Google Scholar 

  25. Qiao W, Song Y, Seong-Ho Y, Isao M (2005) Modification of commercial activated carbon through gasification by impregnated metal salts to develop mesoporous structures. New Carbon Mater 20:198–204

    CAS  Google Scholar 

  26. Rettig J, Trotter J (1987) Refinement of the structure of orthorhombic sulfur, α-S8. Acta Cryst C43:2260–2262

    CAS  Google Scholar 

  27. Gallacrer C, Pinkerton A (1993) A redetermination of monclinic γ-sulfur. Acta Cryst C49:125–126

    Google Scholar 

  28. Sricharoenchaikul V, Pechyen C, Aht-ong D, Atong D (2008) Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy Fuel 22:31–37

    Google Scholar 

  29. Peng H, Xiao H, Yin HQ (2008) Effect of CO2 activation on preparation of honeycomb carbon and its performance. Resource Development Market 24:673–703

    Google Scholar 

  30. Liang X, Liu Y, Wen Z, Huang L, Wang X, Zhang H (2011) A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries. J Power Sources 196:6951–6955

    Article  CAS  Google Scholar 

  31. He M, Yuan L, Zhang W, Hu X, Huang Y (2011) Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J Phys Chem C 115:15703–15709

    Google Scholar 

  32. Marmorstein D, Yu T, Striebel K, McLarnon F, Hou J, Cairns E (2000) Electrochemical performance of lithium-sulfur cells with three different polymer electrolytes. J Power Sources 89:219–226

    Article  CAS  Google Scholar 

  33. Cheon S, Choi S, Han J, Choi Y, Jung B, Lim H (2004) Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J Electrochem Soc 151:A2067–A2073

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51202242) and the Knowledge Innovation Program of Chinese Academy of Sciences (no. S201124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huamin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Zhang, H., Zhang, Y. et al. A modified hierarchical porous carbon for lithium/sulfur batteries with improved capacity and cycling stability. J Solid State Electrochem 17, 2243–2250 (2013). https://doi.org/10.1007/s10008-013-2096-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2096-1

Keywords

Navigation