Skip to main content

Advertisement

Log in

Structural and optical properties of tripod-like ZnO thin film and its application in dye-sensitized solar cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we have synthesized Zinc oxide (ZnO) tripods and used its thin film as photoanode in dye-sensitized solar cells. SEM micrographs of the as-prepared sample of ZnO confirmed tripod-like morphology consisting of three cylindrical arms with well-defined ends, joined at a common core. The prepared sample of ZnO tripods was further characterized by EDX, XRD, UV-VIS, and FTIR. The dye N719-sensitized solar cell fabricated with photoanode of ZnO prepared in this work provided the open-circuit photo voltage (V oc) = 0.558 V, short-circuit photocurrent (J sc) = 6.368 mA cm-2, fill factor (FF) = 0.50, and total conversion efficiency (η) = 0.88 % under full light illumination (intensity 200 mW cm−2). When cell was illuminated by visible light (150 mW/cm2), V oc = 0.546 V, J sc = 4.437 mA/cm2, FF = 0.54, and η = 0.88 % were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tang ZK, Wong GKL, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (1998) Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl Phys Lett 72:3270–3272

    Article  CAS  Google Scholar 

  2. Ryu MK, Lee SH, Jang MS, Panin GN, Kang TN (2002) Postgrowth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron sputtering technique. J Appl Phys 92:154–159

    Article  CAS  Google Scholar 

  3. Bahadur L, Srivastava P (2003) Efficient photon-to-electron conversion with rhodamine 6 G-sensitized nanocrystalline n-ZnO thin film electrodes in acetonitrile solution. Sol Energy Mater Sol Cell 79:235–248

    Article  CAS  Google Scholar 

  4. Kushwaha S, Bahadur L (2011) Characterization of some metal-free organic dyes as photosensitizer for nanocrystalline ZnO-based dye sensitized solar cells. Int J Hydrogen Energy 36:1162–1167

    Article  Google Scholar 

  5. Kushwaha S, Bahadur L (2011) Characterization of synthetic Ni(II)—xylenol complex as a photosensitizer for wide-band gap ZnO semiconductor electrodes. Int J Photoenergy. doi:10.1155/2011/980560

  6. Bahadur L, Kushwaha S (2012) Highly efficient nanocrystalline ZnO thin films prepared by a novel method and their application in dye-sensitized solar cells. Appl Phys A: Mater Sci Process 109:655–663

    Article  CAS  Google Scholar 

  7. Kushwaha S, Bahadur L (2012) Natural alkannin and anthocyanin as photosensitizers for dye-sensitized solar cells. Proc SCES (2012) Student conf, held at Allahabad, Uttar Pradesh, doi:10.1109/SCES.2012.6199084

  8. Liu Y, Gorla CR, Liang S, Emanetoglu N, Lu Y, Shen H, Wraback M (2000) Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J Electron Mater 29:69–74

    Article  CAS  Google Scholar 

  9. Naseri N, Yousefi M, Moshfegh AZ (2011) A comparative study on photoelectrochemical activity of ZnO/TiO2 and TiO2/ZnO nanolayer systems under visible irradiation. Sol Energy 85:1972–1978

    Article  CAS  Google Scholar 

  10. Lu L, Li R, Fan K, Peng T (2010) Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Sol Energy 84:844–853

    Article  CAS  Google Scholar 

  11. Chen H, Li W, Liu H, Zhu L (2010) A suitable deposition method of CdS for high performance CdS-sensitized ZnO electrodes: sequential chemical bath deposition. Sol Energy 84:1201–1207

    Article  CAS  Google Scholar 

  12. Pawar RC, Shaikh JS, Babar AA, Dhere PM, Patil PS (2011) Aqueous chemical growth of ZnO disks, rods, spindles, and flowers: pH dependency and photoelectrochemical properties. Sol Energy 85:1119–1127

    Article  CAS  Google Scholar 

  13. Hames Y, Alpaslan Z, Kösemen A, San SE, Yerli Y (2010) Electrochemically grown ZnO nanorods for hybrid solar cell applications. Sol Energy 84:426–431

    Article  CAS  Google Scholar 

  14. Huang HM, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 13:113–146

    Article  CAS  Google Scholar 

  15. Choi JH, Tabata H, Kawai T (2001) Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode. J Cryst Growth 226:493–500

    Article  CAS  Google Scholar 

  16. Liu CH, Zapien JA, Yao Y, Meng XM, Lee CS, Lee FSS (2003) High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv Mater 15:838–841

    Article  CAS  Google Scholar 

  17. Lyu SC, Zhang Y, Ruh H, Lee HJ, Shim HW, Suh EK, Lee CJ (2002) Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem Phys Lett 363:134–138

    Article  CAS  Google Scholar 

  18. Yao BD, Chen YF, Wang N (2002) Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl Phys Lett 81:757–759

    Article  CAS  Google Scholar 

  19. Wu JJ, Liu SC (2002) Catalyst-free growth and characterization of ZnO nanorods. J Phys Chem B 106:9546–9551

    Article  CAS  Google Scholar 

  20. Zhang XT, Liu YC, Zhang LG, Zhang JY, Lu YM, Shen DZ, Xu W, Zhong GZ, Fan XW, Kong XG (2002) Structure and optically pumped lasing from nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. J Appl Phys 92:3293–3298

    Article  CAS  Google Scholar 

  21. Kim SW, Fujita S, Fujita S (2002) Self-organized ZnO quantum dots on SiO2/Si substrates by metalorganic chemical vapor deposition. Appl Phys Lett 81:5036–5065

    Article  CAS  Google Scholar 

  22. Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464–466

    Article  CAS  Google Scholar 

  23. Hirano S, Kato K (1988) Formation of LiNbO3 films by hydrolysis of metal alkoxides. J Non-Cryst Solids 10:538–541

    Article  Google Scholar 

  24. Arfsten NJ (1984) Sol-gel derived transparent IR-reflecting ITO semiconductor coatings and future applications. J Non-Cryst Solids 63:243–249

    Article  CAS  Google Scholar 

  25. Hu JT, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–439

    Article  CAS  Google Scholar 

  26. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  27. Wu Y, Yang P (2000) Germanium nanowire growth via simple vapor transport. Chem Mater 12:605–607

    Article  CAS  Google Scholar 

  28. Chen CC, Yeh CC (2000) Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv Mater 12:738–741

    Article  CAS  Google Scholar 

  29. Bai ZB, Yu DP, Zhang HZ, Ding Y, Gai XZ, Hang QL, Xiong GC, Feng SQ (1999) Nano-scale GeO2 wires synthesized by physical evaporation. Chem Phys Lett 303:311–314

    Article  CAS  Google Scholar 

  30. Yazawa M, Koguchi M, Muto A, Ozawa M, Hiruma K (1992) Effect of one monolayer of surface gold atoms on the epitaxial growth of In as nanowhiskers. Appl Phys Lett 61:2051–2053

    Article  CAS  Google Scholar 

  31. Choi YC, Kim WS, Park YS, Lee SM, Bae DJ, Lee YH, Park G-S, Choi WB, Lee NS, Kim JM (2000) Catalytic growth of β-Ga2O3 nanowires by arc discharge. Adv Mater 12:746–749

    Article  CAS  Google Scholar 

  32. Duan XF, Leiber CM (2000) General synthesis of compound semiconductor nanowires. Adv Mater 12:298–302

    Article  CAS  Google Scholar 

  33. Chen Z, Shan Z, Cao M, Lun L, Mao S (2004) ZnO nanotetrapods. Nanotechnology 15:365–367

    Article  Google Scholar 

  34. Yan H, He R, Pham J, Yang P (2003) Morphogenesis of one-dimensional ZnO nano- and microcrystals. Adv Mater 15:402–405

    Article  CAS  Google Scholar 

  35. Liu F, Cao PJ, Zhang HR, Li JQ, Gao HJ (2004) Controlled self-assembled nanoaeroplanes, nanocombs, and tetrapod-like networks of zinc oxide. Nanotechnology 15:949–952

    Article  CAS  Google Scholar 

  36. Zhong Y, Djurisic AB, Hsu YF, Wong KS, Brauer G, Ling CC, Chan WK (2008) Exceptionally long exciton photoluminescence lifetime in ZnO tetrapods. J Phys Chem C 112:16286–16295

    Article  CAS  Google Scholar 

  37. Chen W, Zhang H, Hsing IM, Yang S (2009) A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcinations. Electrochem Commun 11:1057–1060

    Article  CAS  Google Scholar 

  38. Chen W, Yang S (2011) Dye-sensitized solar cells based on ZnO nanotetrapods. Front Optoelectron China 1:24–44

    Article  Google Scholar 

  39. Liu Y, Chen Z, Kang Z, Bello I, Fan X, Shafiq I, Zhang W, Lee ST (2008) Self-catalytic synthesis of ZnO tetrapods, nanotetraspikes, and nanowires in air at atmospheric pressure. J Phys Chem C 112:9214–9218

    Article  CAS  Google Scholar 

  40. Bahadur L, Rao TN (1995) Photoelectrochemical investigations on particulate ZnO thin film electrodes in non-aqueous solvents. J Photochem Photobiol A Chem 3:233–240

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Ministry of New and Renewable Energy (MNRE, New Delhi, India) and Council of Scientific and Industrial Research (CSIR, New Delhi) is gratefully acknowledged. Thanks are also due to Indian Institute of Technology, Banaras Hindu University, Varanasi, India for providing their facilities (XRD and SEM) during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lal Bahadur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahadur, L., Kushwaha, S. Structural and optical properties of tripod-like ZnO thin film and its application in dye-sensitized solar cell. J Solid State Electrochem 17, 2001–2008 (2013). https://doi.org/10.1007/s10008-013-2053-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2053-z

Keywords

Navigation