Skip to main content
Log in

Dye-sensitized solar cells based on ZnO nanotetrapods

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

In this paper, we reviewed recent systematic studies of using ZnO nanotetrapods for photoanodes of dye-sensitized solar cells (DSSCs) in our group. First, the efficiency of power conversion was obtained by more than 3.27% by changes of conditions of dye loading and film thickness of ZnO nanotetrapod. Short-circuit photocurrent densities (J sc) increased with the film thickness, J sc would not be saturation even the film thickness was greater than 35 μm. The photoanode architecture had been charactered by good crystallinity, network forming ability, and limited electron-hopping interjunctions. Next, DSSCs with high efficiency was devised by infiltrating SnO2 nanoparticles into the ZnO nanotetrapods photoanodes. Due to material advantages of both constituents described as above, the composite photoanodes exhibited extremely large roughness factors (RF s), good charge collection, and tunable light scattering properties. By varying the composition of the composite photoanodes, we had achieved an efficiency of 6.31% by striking a balance between high efficiency of charge collection for SnO2 nanoparticles rich films and high light scattering ability for ZnO nanotetrapods rich films. An ultrathin layer of ZnO was found to form spontaneously on the SnO2 nanoparticles, which primarily was responsible for enhancing open-circuit photovoltage (V oc). We also identified that recombination in SnO2/ZnO composite films was mainly determined by ZnO shell condition on SnO2, whereas electron transport was greatly influenced by the morphologies and sizes of ZnO crystalline additives. Finally, we applied the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods to flexible DSSCs by low temperature technique of “acetic acid gelation-mechanical press-ammonia activation.” The efficiency has been achieved by 4.91% on ITO-coated polyethylenenaphtalate substrate. The formation of a thin ZnO shell on SnO2 nanoparticles, after ammonia activation, was also found to be critical to boosting V oc and to improving inter-particles contacts. Mechanical press, apart from enhancing film durability, also significantly improved charge collection. ZnO nanotetrapods had been demonstrated to be a better additive than ZnO particles for the improvement of charge collection in SnO2/ZnO composite photoanodes regardless of whether they were calcined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B, Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

    Article  Google Scholar 

  2. Nazeeruddin M K, Kay A, Rodicio I, Humphry-baker R, Muller E, Liska P, Vlachopoulos N, Gratzel M. Conversion of light to electricity by Cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(Ii) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society, 1993, 115(14): 6382–6390

    Article  Google Scholar 

  3. Martinson A B F, Hamann T W, Pellin M J, Hupp J T. New architectures for dye-senstized solar cells. Chemistry-A European Journal, 2008, 14(15): 4458–4467

    Article  Google Scholar 

  4. Ku C H, Wu J J. Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Applied Physics Letters, 2007, 91(9): 093117

    Article  Google Scholar 

  5. Feng X J, Shankar K, Varghese O K, Paulose M, Latempa T J, Grimes C A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Letters, 2008, 8(11): 3781–3786

    Article  Google Scholar 

  6. Jiang C Y, Sun X W, Tan K W, Lo G Q, Kyaw A K K, Kwong D L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Applied Physics Letters, 2008, 92(14): 143101

    Article  Google Scholar 

  7. Chen W, Zhang H F, Hsing I M, Yang S H. A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcination. Electrochemistry Communications, 2009, 11(5): 1057–1060

    Article  Google Scholar 

  8. Yoshida T, Zhang J B, Komatsu D, Sawatani S, Minoura H, Pauporte T, Lincot D, Oekermann T, Schlettwein D, Tada H, Wohrle D, Funabiki K, Matsui M, Miura H, Yanagi H. Electrodeposition of inorganic/organic hybrid thin films. Advanced Functional Materials, 2009, 19(1): 17–43

    Article  Google Scholar 

  9. Qiu Y C, Chen W, Yang S H. Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20(5): 1001–1006

    Article  Google Scholar 

  10. Chen W, Qiu Y C, Zhong Y C, Wong K S, Yang S H. High-Efficiency Dye-Sensitized Solar Cells Based on the Composite Photoanocles of SnO2 Nanoparticles/ZnO Nanotetrapods. Journal of Physical Chemistry A, 2010, 114(9): 3127–3138

    Article  Google Scholar 

  11. Chen W, Qiu Y C, Yang S H. A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2010, 12(32): 9494–9501

    Article  Google Scholar 

  12. Qiu Y C, Chen W, Yang S H. Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for highefficiency dye-sensitized solar cells. Angewandte Chemie International Edition, 2010, 49(21): 3675–3679

    Google Scholar 

  13. Law M, Greene L E, Johnson J C, Saykally R, Yang P D. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455–459

    Article  Google Scholar 

  14. Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society, 2009, 131(11): 3985–3990

    Article  Google Scholar 

  15. Zhu K, Neale N R, Miedaner A, Frank A J. Enhanced chargecollection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters, 2007, 7(1): 69–74

    Article  Google Scholar 

  16. Yamaguchi T, Tobe N, Matsumoto D, Arakawa H. Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes. Chemical Communications, 2007, (45): 4767–4769

    Article  Google Scholar 

  17. Chen C Y, Wang M K, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C H, Decoppet J D, Tsai J H, Grätzel C, Wu C G, Zakeeruddin S M, Grätzel M. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano, 2009, 3(10): 3103–3109

    Article  Google Scholar 

  18. Dürr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nature Materials, 2005, 4(8): 607–611

    Article  Google Scholar 

  19. Murakami T N, Kijitori Y, Kawashima N, Miyasaka T. UV lightassisted chemical vapor deposition of TiO2 for efficiency development at dye-sensitized mesoporous layers on plastic film electrodes. Chemistry Letters, 2003, 32(11): 1076–1077

    Article  Google Scholar 

  20. Zhang D S, Yoshida T, Minoura H. Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface. Advanced Materials (Deerfield Beach, Fla.), 2003, 15(10): 814–817

    Article  Google Scholar 

  21. Uchida S, Timiha M, Takizawa H, Kawaraya M. Flexible dyesensitized solar cells by 28 GHz microwave irradiation. Journal of Photochemistry and Photobiology a-Chemistry, 2004, 164(1—3): 93–96

    Article  Google Scholar 

  22. Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z. ZnO Nanostructures for dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.), 2009, 21(41): 4087–4108

    Article  Google Scholar 

  23. Liu X Z, Luo Y H, Li H, Fan Y Z, Yu Z X, Lin Y, Chen L Q, Meng Q B. Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells. Chemical Communications, 2007, (27): 2847–2849

    Article  Google Scholar 

  24. Shi Y T, Zhan C, Wang L D, Ma B B, Gao R, Zhu Y F, Qiu Y. Polydisperse spindle-shaped ZnO particles with their packing micropores in the photoanode for highly efficient quasi-solid dyesensitized solar cells. Advanced Functional Materials, 2010, 20(3): 437–444

    Article  Google Scholar 

  25. Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z. ZnO Nanostructures for dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.), 2009, 21(41): 4087–4108

    Article  Google Scholar 

  26. Hsu Y F, Xi Y Y, Yip C T, Djurisic A B, Chan W K. Dye-sensitized solar cells using ZnO tetrapods. Journal of Applied Physics, 2008, 103(8): 083114

    Article  Google Scholar 

  27. Qiu Y F, Yang S H. ZnO nanotetrapods: Controlled vapor-phase synthesis and application for humidity sensing. Advanced Functional Materials, 2007, 17(8): 1345–1352

    Article  Google Scholar 

  28. Chiu W H, Lee C H, Cheng H M, Lin H F, Liao S C, Wu J M, Hsieh W F. Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells. Energy & Environmental Science, 2009, 2(6): 694–698

    Article  Google Scholar 

  29. Bacsa R R, Dexpert-Ghys J, Verelst M, Falqui A, Machado B, Bacsa W S, Chen P, Zakeeruddin S M, Graetzel M, Serp P. Synthesis and structure-property correlation in shape-controlled ZnO nanoparticles prepared by chemical vapor synthesis and their application in dyesensitized solar cells. Advanced Functional Materials, 2009, 19(6): 875–886

    Article  Google Scholar 

  30. Horiuchi H, Katoh R, Hara K, Yanagida M, Murata S, Arakawa H, Tachiya M. Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation. Journal of Physical Chemistry B, 2003, 107(11): 2570–2574

    Article  Google Scholar 

  31. Keis K, Lindgren J, Lindquist S E, Hagfeldt A. Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir, 2000, 16(10): 4688–4694

    Article  Google Scholar 

  32. Chou T P, Zhang Q F, Fryxell G E, Cao G Z. Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Advanced Materials (Deerfield Beach, Fla.), 2007, 19(18): 2588–2592

    Article  Google Scholar 

  33. Wang Q, Ito S, Grätzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H. Characteristics of high efficiency dyesensitized solar cells. Journal of Physical Chemistry B, 2006, 110(50): 25210–25221

    Article  Google Scholar 

  34. Wang Q, Moser J E, Grätzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. Journal of Physical Chemistry B, 2005, 109(31): 14945–14953

    Article  Google Scholar 

  35. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells, 2005, 87(1–4): 117–131

    Article  Google Scholar 

  36. Fabregat-Santiago F, Barea E M, Bisquert J, Mor G K, Shankar K, Grimes C A. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. Journal of the American Chemical Society, 2008, 130(34): 11312–11316

    Article  Google Scholar 

  37. Wang Q, Zhang Z, Zakeeruddin S M, Gratzel M. Enhancement of the performance of dye-sensitized solar cell by formation of shallow transport levels under visible light illumination. Journal of Physical Chemistry C, 2008, 112(17): 7084–7092

    Article  Google Scholar 

  38. Tan B, Wu Y Y. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. Journal of Physical Chemistry B, 2006, 110(32): 15932–15938

    Article  Google Scholar 

  39. Thavasi V, Renugopalakrishnan V, Jose R, Ramakrishna S. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Materials Science and Engineering R Reports, 2009, 63(3): 81–99

    Article  Google Scholar 

  40. Gan X Y, Li X M, Gao X D, Zhuge F W, Yu W D. ZnO nanowire/ TiO2 nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coating method. Thin Solid Films, 2010, 518(17): 4809–4812

    Article  Google Scholar 

  41. Yodyingyong S, Zhang Q F, Park K, Dandeneau C S, Zhou X Y, Triampo D, Cao G Z. ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Applied Physics Letters, 2010, 96(7): 073115

    Article  Google Scholar 

  42. Kumara G R R A, Tennakone K, Kottegoda I R M, Bandaranayake P K M, Konno A, Okuya M, Kaneko S, Murakami K. Efficient dyesensitize photoelectrochemical cells made from nanocrystalline tin(IV) oxide-zinc oxide composite films. Semiconductor Science and Technology, 2003, 18(4): 312–318

    Article  Google Scholar 

  43. Niinobe D, Makari Y, Kitamura T, Wada Y, Yanagida S. Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells. Journal of Physical Chemistry B, 2005, 109(38): 17892–17900

    Article  Google Scholar 

  44. Nozik A J, Memming R. Physical chemistry of semiconductorliquid interfaces. Journal of Physical Chemistry, 1996, 100(31): 13061–13078

    Article  Google Scholar 

  45. Tan B, Toman E, Li Y G, Wu Y Y. Zinc stannate (Zn2SnO4) dyesensitized solar cells. Journal of the American Chemical Society, 2007, 129(14): 4162–4163

    Article  Google Scholar 

  46. Hore S, Nitz P, Vetter C, Prahl C, Niggemann M, Kern R. Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells. Chemical Communications, 2005, (15): 2011–2013

    Article  Google Scholar 

  47. Ferber J, Luther J. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 1998, 54(1–4): 265–275

    Article  Google Scholar 

  48. Kay A, Gratzel M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chemistry of Materials, 2002, 14(7): 2930–2935

    Article  Google Scholar 

  49. Ito S, Murakami T N, Comte P, Liska P, Gratzel C, Nazeeruddin M K, Gratzel M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516(14): 4613–4619

    Article  Google Scholar 

  50. Jing B W, Zhang H, Zhang M H, Lu Z H, Shen T. Ruthenium(II) thiocyanate complexes containing 4′-(4-phosphonatophenyl)-2,2′:6′,2″-terpyridine: synthesis, photophysics and photosensitization to nanocrystalline TiO2 electrodes. Journal of Materials Chemistry, 1998, 8(9): 2055–2060

    Article  Google Scholar 

  51. Tennakone K, Kumara G R R A, Kottegoda I R M, Perera V P S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications, 1999, (1): 15–16

    Article  Google Scholar 

  52. Fukai Y, Kondo Y, Mori S, Suzuki E. Highly efficient dyesensitized SnO2 solar cells having sufficient electron diffusion length. Electrochemistry Communications, 2007, 9(7): 1439–1443

    Article  Google Scholar 

  53. Koide N, Islam A, Chiba Y, Han L Y. Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. Journal of Photochemistry and Photobiology a-Chemistry, 2006, 182(3): 296–305

    Article  Google Scholar 

  54. Wang Z S, Kawauchi H, Kashima T, Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248(13–14): 1381–1389

    Article  Google Scholar 

  55. Grätzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chemistry Letters, 2005, 34(1): 8–13

    Article  Google Scholar 

  56. Koops S E, Durrant J R. Transient emission studies of electron injection in dye sensitised solar cells. Inorganica Chimica Acta, 2008, 361(3): 663–670

    Article  Google Scholar 

  57. Koops S E, O’Regan B C, Barnes P R F, Durrant J R. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. Journal of the American Chemical Society, 2009, 131(13): 4808–4818

    Article  Google Scholar 

  58. Oekermann T, Zhang D, Yoshida T, Minoura H. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. Journal of Physical Chemistry B, 2004, 108(7): 2227–2235

    Article  Google Scholar 

  59. Zhu K, Vinzant T B, Neale N R, Frank A J. Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Letters, 2007, 7(12): 3739–3746

    Article  Google Scholar 

  60. Demir M M, Munoz-Espi R, Lieberwirth I, Wegner G. Precipitation of monodisperse ZnO nanocrystals via acid-catalyzed esterification of zinc acetate. Journal of Materials Chemistry, 2006, 16(28): 2940–2947

    Article  Google Scholar 

  61. van de Lagemaat J, Frank A J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies. Journal of Physical Chemistry B, 2001, 105(45): 11194–11205

    Article  Google Scholar 

  62. Colodrero S, Mihi A, Haggman L, Ocana M, Boschloo G, Hagfeldt A, Miguez H. Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.), 2009, 21(7): 764–770

    Article  Google Scholar 

  63. Park N G, Kim K M, Kang M G, Ryu K S, Chang S H, Shin Y J. Chemical sintering of nanoparticles: A methodology for lowtemperature fabrication of dye-sensitized TiO2 films. Advanced Materials (Deerfield Beach, Fla.), 2005, 17(19): 2349–2353

    Article  Google Scholar 

  64. Zhang D S, Yoshida T, Oekermann T, Furuta K, Minoura H. Roomtemperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells. Advanced Functional Materials, 2006, 16(9): 1228–1234

    Article  Google Scholar 

  65. Toivola M, Halme J, Miettunen K, Aitola K, Lund P D. Nanostructured dye solar cells on flexible substrates-review. International Journal of Energy Research, 2009, 33(13): 1145–1160

    Article  Google Scholar 

  66. Zhang Q F, Chou T P, Russo B, Jenekhe S A, Cao G Z. Aggregation of ZnO nanocrystallites for high conversion efficiency in dyesensitized solar cells. Angewandte Chemie International Edition, 2008, 47(13): 2402–2406

    Article  Google Scholar 

  67. Han L Y, Koide N, Chiba Y, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters, 2004, 84(13): 2433–2435

    Article  Google Scholar 

  68. Han L Y, Koide N, Chiba Y, Islam A, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus. Chimie, 2006, 9(5–6): 645–651

    Article  Google Scholar 

  69. Chen H W, Hsu C Y, Chen J G, Lee K M, Wang C C, Huang K C, Ho K C. Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. Journal of Power Sources, 2010, 195(18): 6225–6231

    Article  Google Scholar 

  70. Grinis L, Kotlyar S, Ruhle S, Grinblat J, Zaban A. Conformal nanosized inorganic coatings on mesoporous TiO2 films for low-temperature dye-sensitized solar cell fabrication. Advanced Functional Materials, 2010, 20(2): 282–288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihe Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Yang, S. Dye-sensitized solar cells based on ZnO nanotetrapods. Front. Optoelectron. China 4, 24–44 (2011). https://doi.org/10.1007/s12200-011-0207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-011-0207-0

Keywords

Navigation