Skip to main content
Log in

Controlled synthesis of mesoporous carbon nanosheets and their enhanced supercapacitive performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Mesoporous carbon nanosheets (MCNs) were synthesized using porous magnesium oxide (MgO) layer as the template precursor and resol as the carbon source. The morphology of the mesoporous carbon particles can be easily controlled by altering the mass ratio of MgO to resol. The structural characterization demonstrates that the interlaced MCNs can be formed when MgO/resol is 1:1 and they possess the carbon nanolayer with a thickness of about 5 nm and a width of about 200 nm. The quantities of mesopores and micropores endow the MCNs with a large surface area of 1,180 m2 g−1 and a high pore volume of 1.56 cm3 g−1. The supercapacitive performance of carbon products synthesized with various MgO/resol ratios was evaluated using cyclic voltammetry and galvanostatic charge–discharge techniques. The results show that the interlaced MCNs exhibit the highest specific capacitance of 241 F g−1, the best rate capability and cycling stability, which are attributed to the fast electrolyte ion transport or diffusion throughout the electrode matrix and effective utilization of the electrical double-layer capacitance of carbon layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2004) What are batteries, fuel cells and supercapacitors? Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  2. Subramanian V, Zhu HW, Vajtai R, Ajayan PM, Wei BQ (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109:20207–20214

    Article  CAS  Google Scholar 

  3. Conway BE (1999) Electrochemical supercapacitors: Scientific fundamentals and technological applications. Kluwer, New York

    Book  Google Scholar 

  4. Mondal SK, Keshab B, Munichandraiah N (2007) High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate. Electrochim Acta 52:3258–3264

    Article  CAS  Google Scholar 

  5. Rios EC, Rosario AV, Mello RMQ, Micaroni L (2007) Poly(3-methylthiophene)/MnO2 composite electrodes as electrochemical capacitors. J Power Sources 163:1137–1142

    Article  CAS  Google Scholar 

  6. Kim BH, Yang KS, Ferraris JP (2012) Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors. Electrochim Acta 75:325–331

    Article  CAS  Google Scholar 

  7. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47:373–376

    Article  CAS  Google Scholar 

  8. Xiong W, Liu MX, Gan LH, Lv YK, Li Y, Yang L, Xu ZJ, Hao ZX, Liu HL, Chen LW (2011) A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes. J Power Sources 196:10461–10464

    Article  CAS  Google Scholar 

  9. Vix-Guterl C, Saadallah S, Jurewicz K, Frackowiak E, Reda M, Parmentier J, Patarin J, Béguin F (2004) Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure. Mater Sci Eng B 108:148–155

    Article  Google Scholar 

  10. Yoon S, Oh SM, Lee CW, Ryu JH (2011) Pore structure tuning of mesoporous carbon prepared by direct templating method for application to high rate supercapacitor electrodes. J Electroanal Chem 650:187–195

    Article  CAS  Google Scholar 

  11. Fuertes AB, Pico F, Rojo JM (2004) Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. J Power Sources 133:329–336

    Article  CAS  Google Scholar 

  12. Noked M, Soffer A, Aurbach D (2011) The electrochemistry of activated carbonaceous materials: past, present, and future. J Solid State Electrochem 15:1563–1578

    Article  CAS  Google Scholar 

  13. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392

    Article  CAS  Google Scholar 

  14. Yang CM, Kim YJ, Endo M, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2007) Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J Am Chem Soc 129:20–21

    Article  CAS  Google Scholar 

  15. Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282

    Article  CAS  Google Scholar 

  16. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  17. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  CAS  Google Scholar 

  18. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  19. An XH, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10:4295–4301

    Article  CAS  Google Scholar 

  20. Zhang LL, Zhou R, Zhao XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992

    Article  CAS  Google Scholar 

  21. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  22. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  23. Fan ZJ, Liu Y, Yan J, Ning GQ, Wang Q, Wei T, Zhi LJ, Wei F (2012) Template-directed synthesis of pillared-porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors. Adv Energy Mater 2:419–424

    Article  CAS  Google Scholar 

  24. Ning GQ, Fan ZJ, Wang G, Gao JS, Qian WZ, Wei F (2011) Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Commun 47:5976–5978

    Article  CAS  Google Scholar 

  25. Meng Y, Gu D, Zhang FQ, Shi YF, Cheng L, Feng D, Wu ZX, Chen ZX, Wan Y, Stein A, Zhao DY (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chem Mater 18:4447–4464

    Article  CAS  Google Scholar 

  26. Liu HJ, Jin LH, He P, Wang CX, Xia YY (2009) Direct synthesis of mesoporous carbon nanowires in nanotubes using MnO2 nanotubes as a template and their application in supercapacitors. Chem Commun 44:6813–6815

    Article  Google Scholar 

  27. Kayiran SB, Lamari FD, Levesque D (2004) Adsorption properties and structural characterization of activated carbons and nanocarbons. J Phys Chem B 108:15211–15215

    Article  CAS  Google Scholar 

  28. Wang XM, Xu BS, Liua XG, Jiaa HS, Hidekib I (2005) The Raman spectrum of nano-structured onion-like fullerenes. Physica B 357:277–281

    Article  CAS  Google Scholar 

  29. Song RR, Song HH, Zhou JS, Chen XH, Wu B, Yang HY (2012) Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries. J Mater Chem 22:12369–12374

    Article  CAS  Google Scholar 

  30. Yang S, Feng X, Wang L, Tang K, Maier J, Müllen K (2010) Graphene-based nanosheets with a sandwich structure. Angew Chem Int Edit 49:4795–4799

    Article  CAS  Google Scholar 

  31. Kruk M, Jaroniec M, Gadkaree KP (1997) Nitrogen adsorption studies of novel synthetic active carbons. J Colloid Interface Sci 192:250–256

    Article  CAS  Google Scholar 

  32. Zhao JZ, Cheng FY, Yi CH, Liang J, Tao ZL, Chen J (2009) Facile synthesis of hierarchically porous carbons and their application as a catalyst support formethanol oxidation. J Mater Chem 19:4108–4116

    Article  CAS  Google Scholar 

  33. Vinu A, Sawant DP, Ariga K, Hartmann M, Halligudi SB (2005) Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA-15 catalysts. Microporous Mesoporous Mater 80:195–203

    Article  CAS  Google Scholar 

  34. Yoon BJ, Jeong SH, Lee KH, Kim HS, Park CG, Han JH (2004) Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett 388:170–174

    Article  CAS  Google Scholar 

  35. Chen Z, Wen J, Yan C, Rice L, Sohn H, Shen M, Cai M, Dunn B, Lu Y (2011) High-performance supercapacitors based on hierarchically porous graphite particles. Adv Energy Mater 1:551–556

    Article  CAS  Google Scholar 

  36. Zhang J, Kong LB, Cai JJ, Li H, Luo YC, Kang L (2010) Hierarchically porous nickel hydroxide/mesoporous carbon composite materials for electrochemical capacitors. Microporous Mesoporous Mater 132:154–162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20925621, 21236003, 21206043), the Shanghai Pujiang Program (12PJ1401900), the Fundamental Research Funds for the Central Universities, and the project sponsored by SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qilin Cheng or Chunzhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Y., Cheng, Q., Pavlinek, V. et al. Controlled synthesis of mesoporous carbon nanosheets and their enhanced supercapacitive performance. J Solid State Electrochem 17, 1677–1684 (2013). https://doi.org/10.1007/s10008-013-2025-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2025-3

Keywords

Navigation