Skip to main content

Advertisement

Log in

The effect of activation methods on the electrochemical performance of ordered mesoporous carbon for supercapacitor applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ordered mesoporous carbon (CMK-3) was fabricated by a simple nanocasting method using SBA-15 as a hard template. The CMK-3 had a two-dimensional hexagonal mesoporous structure and a specific surface area of approximately 975.9 m2 g−1. The CMK-3 was modified by HNO3 solutions with magnetic stirring and ultrasonic activation, respectively, to explore the influence of various activation methods on pore structure, surface state, morphology, and electrochemical performance. The CMK-3 modified by ultrasonic activation (CMK-3-US) reached the optimal specific capacitance of 233.4 A g−1 at 0.5 A g−1 and retained 94.2% after 500 cycles in 3 M KOH electrolyte. Furthermore, a symmetric supercapacitor was successfully assembled using CMK-3-US electrodes, which delivered an excellent energy density of 21.5 Wh kg−1 at a power density of 225 W kg−1 and exhibited great long-term stability with 97.5% retention after 4000 cycles. Compared to magnetic stirring activation, ultrasonic cavitation could better increase the efficiency of the HNO3 activation for mesoporous carbon particles. The results indicate ultrasonic activation is an efficient way to modify carbon-based electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gao D, Wang L, Wang C, Wei Q (2015) Electrospinning of porous carbon nanocomposites for supercapacitor. Fibers Polym 16(2):421–425. doi:10.1007/s12221-015-0421-2

    Article  Google Scholar 

  2. Hasegawa G (2013) Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous s-containing activated carbon with high surface area. In: Studies on porous monolithic materials prepared via sol–gel processes, Springer theses, Springer, Tokyo, Japan, pp 79–89. doi:10.1007/978-4-431-54198-1_6

  3. Liu H-J, Wang X-M, Cui W-J, Dou Y-Q, Zhao D-Y, Xia Y-Y (2010) Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J Mater Chem 20(20):4223–4230. doi:10.1039/b925776d

    Article  Google Scholar 

  4. Guo R, Lin R, Yue W, Ma H (2015) Enhanced electrochemical performance of mesoporous carbon with increased pore size and decreased pore wall thickness. Electrochim Acta 174:1050–1056. doi:10.1016/j.electacta.2015.06.113

    Article  Google Scholar 

  5. Li H-Q, Liu R-L, Zhao D-Y, Xia Y-Y (2007) Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon 45(13):2628–2635. doi:10.1016/j.carbon.2007.08.005

    Article  Google Scholar 

  6. Redondo E, Carretero-González J, Goikolea E, Ségalini J, Mysyk R (2015) Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim Acta 160:178–184. doi:10.1016/j.electacta.2015.02.006

    Article  Google Scholar 

  7. Cao L, Kruk M (2010) A family of ordered mesoporous carbons derived from mesophase pitch using ordered mesoporous silicas as templates. Adsorption 16(4):465–472. doi:10.1007/s10450-010-9248-8

    Article  Google Scholar 

  8. Ryoo R, Joo SH, Jun S (1999) ChemInform abstract: synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. ChemInform. doi:10.1002/chin.199950233

    Google Scholar 

  9. Lee J, Yoon S, Hyeon TM, Oh S, Bum Kim K (1999) Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem Commun 21:2177–2178. doi:10.1039/a906872d

    Article  Google Scholar 

  10. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713. doi:10.1021/ja002261e

    Article  Google Scholar 

  11. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27. doi:10.1016/j.jpowsour.2006.02.065

    Article  Google Scholar 

  12. Xia K, Gao Q, Jiang J, Hu J (2008) Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46(13):1718–1726. doi:10.1016/j.carbon.2008.07.018

    Article  Google Scholar 

  13. Li H, Ha Xi, Zhu S, Wen Z, Wang R (2006) Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon. Microporous Mesoporous Mater 96(1–3):357–362. doi:10.1016/j.micromeso.2006.07.021

    Article  Google Scholar 

  14. Wilson BE, He S, Buffington K, Rudisill S, Smyrl WH, Stein A (2015) Utilizing ionic liquids for controlled N-doping in hard-templated, mesoporous carbon electrodes for high-performance electrochemical double-layer capacitors. J Power Sources 298:193–202. doi:10.1016/j.jpowsour.2015.08.057

    Article  Google Scholar 

  15. Li Y-T, Pi Y-T, Lu L-M, Xu S-H, Ren T-Z (2015) Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance. J Power Sources 299:519–528. doi:10.1016/j.jpowsour.2015.09.039

    Article  Google Scholar 

  16. Zhu T, Lu Y, Zheng S, Chen Y, Guo H (2015) Influence of nitric acid activation on structure and capacitive performances of ordered mesoporous carbon. Electrochim Acta 152:456–463. doi:10.1016/j.electacta.2014.11.161

    Article  Google Scholar 

  17. Solovyov LA, Shmakov AN, Zaikovskii VI, Joo SH, Ryoo R (2002) Detailed structure of the hexagonally packed mesostructured carbon material CMK-3. Carbon 40(13):2477–2481. doi:10.1016/S0008-6223(02)00160-4

    Article  Google Scholar 

  18. Minchev C, Huwe H, Tsoncheva T, Dimitrov M, Paneva D, Mitov I, Froba M (2004) Effect of support pore size on the structural and catalytic properties of iron and cobalt oxides modified SBA-1, SBA-15, MCM-41 and MCM-48 silica materials. In: VanSteen E, Claeys M, Callanan LH (eds) Recent advances in the science and technology of zeolites and related materials, Pts a–c, vol 154., Studies in surface science and catalysisElsevier Science Bv, Amsterdam, pp 841–847

    Google Scholar 

  19. Zhao Y-Q, Lu M, Tao P-Y, Zhang Y-J, Gong X-T, Yang Z, Zhang G-Q, Li H-L (2016) Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J Power Sources 307:391–400. doi:10.1016/j.jpowsour.2016.01.020

    Article  Google Scholar 

  20. Y-g Wang, Cheng L, Li F, H-m Xiong, Y-y Xia (2007) High electrocatalytic performance of Mn3O4/Mesoporous carbon composite for oxygen reduction in alkaline solutions. Chem Mater 19(8):2095–2101. doi:10.1021/cm062685t

    Article  Google Scholar 

  21. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic Triblock and Star Diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036. doi:10.1021/ja974025i

    Article  Google Scholar 

  22. Hsu H-L, Jehng J-M, Sung Y, Wang L-C, Yang S-R (2008) The synthesis, characterization of oxidized multi-walled carbon nanotubes, and application to surface acoustic wave quartz crystal gas sensor. Mater Chem Phys 109(1):148–155. doi:10.1016/j.matchemphys.2007.11.006

    Article  Google Scholar 

  23. Khomenko V, Raymundo-Piñero E, Béguin F (2010) A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J Power Sources 195(13):4234–4241. doi:10.1016/j.jpowsour.2010.01.006

    Article  Google Scholar 

  24. Yuan X, Xu S, Lü J, Yan X, Hu L, Xue Q (2011) Facile synthesis of ordered mesoporous γ-alumina monoliths via polymerization-based gel-casting. Microporous Mesoporous Mater 138(1–3):40–44. doi:10.1016/j.micromeso.2010.09.033

    Article  Google Scholar 

  25. Bazuła PA, Lu A-H, Nitz J-J, Schüth F (2008) Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach. Microporous Mesoporous Mater 108(1–3):266–275. doi:10.1016/j.micromeso.2007.04.008

    Article  Google Scholar 

  26. Zhang J, Kong L-B, Cai J-J, Li H, Luo Y-C, Kang L (2010) Hierarchically porous nickel hydroxide/mesoporous carbon composite materials for electrochemical capacitors. Microporous Mesoporous Mater 132(1–2):154–162. doi:10.1016/j.micromeso.2010.02.013

    Article  Google Scholar 

  27. Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP (2004) Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes. Carbon 42(14):2849–2854. doi:10.1016/j.carbon.2004.06.031

    Article  Google Scholar 

  28. Qi H, Zhang C, Li X (2006) Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin. Sens Actuators B 114(1):364–370. doi:10.1016/j.snb.2005.06.002

    Article  Google Scholar 

  29. Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42(14):2867–2872. doi:10.1016/j.carbon.2004.06.035

    Article  Google Scholar 

  30. Li M, Li W, Liu S (2011) Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydr Res 346(8):999–1004. doi:10.1016/j.carres.2011.03.020

    Article  Google Scholar 

  31. Jiang J, Zhang L, Wang X, Holm N, Rajagopalan K, Chen F, Ma S (2013) Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim Acta 113:481–489. doi:10.1016/j.electacta.2013.09.121

    Article  Google Scholar 

  32. Su F, Zeng J, Bao X, Yu Y, Lee JY, Zhao XS (2005) Preparation and characterization of highly ordered graphitic mesoporous carbon as a pt catalyst support for direct methanol fuel cells. Chem Mater 17(15):3960–3967. doi:10.1021/cm0502222

    Article  Google Scholar 

  33. Yang L, Hou LR, Zhang YW, Yuan CZ (2013) Facile synthesis of mesoporous carbon nanofibres towards high-performance electrochemical capacitors. Mater Lett 97:97–99. doi:10.1016/j.matlet.2012.12.018

    Article  Google Scholar 

  34. J-w Lang, X-b Yan, W-w Liu, R-t Wang, Q-j Xue (2012) Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes. J Power Sources 204:220–229. doi:10.1016/j.jpowsour.2011.12.044

    Article  Google Scholar 

  35. Du Q, Zheng M, Zhang L, Wang Y, Chen J, Xue L, Dai W, Ji G, Cao J (2010) Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim Acta 55(12):3897–3903. doi:10.1016/j.electacta.2010.01.089

    Article  Google Scholar 

  36. Khomenko V, Raymundo-Piñero E, Béguin F (2010) A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J Power Sources 195(13):4234–4241. doi:10.1016/j.jpowsour.2010.01.006

    Article  Google Scholar 

  37. Bichat MP, Raymundo-Piñero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48(15):4351–4361. doi:10.1016/j.carbon.2010.07.049

    Article  Google Scholar 

  38. Wang D-W, Li F, Liu M, Lu GQ, Cheng H-M (2008) 3D Aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47(2):373–376. doi:10.1002/anie.200702721

    Article  Google Scholar 

  39. Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Templated mesoporous carbons for supercapacitor application. Electrochim Acta 50(14):2799–2805. doi:10.1016/j.electacta.2004.11.027

    Article  Google Scholar 

  40. Zhou G, Wang D-W, Yin L-C, Li N, Li F, Cheng H-M (2012) Oxygen bridges between nio nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4):3214–3223. doi:10.1021/nn300098m

    Article  Google Scholar 

  41. Ma Y, Zhang C, Ji G, Lee JY (2012) Nitrogen-doped carbon-encapsulation of Fe3O4 for increased reversibility in Li+ storage by the conversion reaction. J Mater Chem 22(16):7845–7850. doi:10.1039/c2jm30422h

    Article  Google Scholar 

Download references

Acknowledgements

This study is primarily supported by Shanghai Eastern-scholar program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zhang, G., Chen, Y. et al. The effect of activation methods on the electrochemical performance of ordered mesoporous carbon for supercapacitor applications. J Mater Sci 52, 2422–2434 (2017). https://doi.org/10.1007/s10853-016-0536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0536-x

Keywords

Navigation