Advertisement

Journal of Solid State Electrochemistry

, Volume 16, Issue 10, pp 3123–3146 | Cite as

Materials issues and recent developments in molten carbonate fuel cells

  • A. Kulkarni
  • S. Giddey
Review

Abstract

Molten carbonate fuel cell is one of the most promising high efficiency and sustainable power generation technologies, as demonstrated by the availability of several commercial units nowadays. Despite the significant progress made over the past few decades, the issues like component stability in carbonate melts and lower power density as compared to other high-temperature fuel cell systems need to be overcome to meet cost and lifetime targets. An improvement in the catalysts and system design for in situ reforming of fuel is critical to make molten carbonate fuel cells (MCFCs) compatible with real world fuels with minimal preprocessing requirements. Thus a significant opportunity exists for materials R&D in the MCFC area. In the present review, the key issues with MCFC component materials: cathode, anode, matrix, current collectors and bipolar plates, are discussed. The alternative materials and strategies adapted by the MCFC R&D community to mitigate these issues are discussed with emphasis on research trends and developments over the past decade.

Keywords

Fuel cell Molten carbonate fuel cell MCFC Molten carbonate electrolyte Materials issues 

References

  1. 1.
    Smithsonian Institution, USA, Available at http://americanhistory.si.edu/fuelcells/mc/mcfcmain.htm. Accessed May 2010
  2. 2.
    Moreno A, McPhill S, Bove R (2008) ENEA International status of molten carbonate fuel cell (MCFC) Technology Report, Available at http://www.energyagency.at/fileadmin/aea/pdf/energietechnologien/molten-carbonate.pdf. Accessed May 2012
  3. 3.
    Fuel Cell Energy Inc, USA, Available at www.fce.com, Accessed May 2010
  4. 4.
    Tomczyk P (2006) MCFC versus other fuel cells—characteristics, technologies and prospects. J Power Sources 160:858–862CrossRefGoogle Scholar
  5. 5.
    EG&G Services, Parsons Inc (2000) Fuel cell handbook, 5th edn. U.S. Department of Energy, Morgantown, USAGoogle Scholar
  6. 6.
    Selman JR, Blomen MJ, Mugerwa MN (1993) Fuel cell systems. Plenum, New YorkGoogle Scholar
  7. 7.
    Remick R, Wheeler D (2010) Molten carbonate and phosphoric acid stationary fuel cells: overview and gap analysis, National Renewable Energy Laboratory Technical Report. NREL/TP-560-49072Google Scholar
  8. 8.
    Tanimoto K (1998) Long-term operation of small sized single MCFCs. J Power Sources 72:77–82CrossRefGoogle Scholar
  9. 9.
    Dicks A (2004) Molten carbonate fuel cells. Curr Opin Solid State Mater Sci 8:379–383CrossRefGoogle Scholar
  10. 10.
    Farooque M (2005) Carbonate fuel cell technology and materials. MRS Bull 30:602–606CrossRefGoogle Scholar
  11. 11.
    Minh N (1988) Technological status of nickel oxide cathodes in molten carbonate fuel cells–a review. J Power Sources 24:1–19CrossRefGoogle Scholar
  12. 12.
    Freni S (1998) The dissolution process of NiO cathodes for molten carbonate fuel cells: state of the art. Int J Energy Res 22:17–31CrossRefGoogle Scholar
  13. 13.
    Ota K, Mitsushima S, Kato S, Asano S, Yoshitake H, Kamiya N (1992) Solubilities of nickel oxide in molten carbonate. J Electrochem Soc 139:667–671CrossRefGoogle Scholar
  14. 14.
    Selman JR, Yazici MS, Izaki Y (1993) NiO cathode dissolution in the MCFC: a review. Am Chem Soc Div Fuel Chem 38(4):1429–1434Google Scholar
  15. 15.
    Vogel W, Bregoli L, Kunz H, Smith S (1984) Stability of NiO cathodes in molten carbonate fuel cells. Proc Symp MCFC Tech Honolulu 84–13:443–451Google Scholar
  16. 16.
    Mitsushima S, Matsuzawa K, Kamiya N, Ota K (2002) Improvement of MCFC cathode stability by additives. Electrochim Acta 47:3823–3830CrossRefGoogle Scholar
  17. 17.
    Belhomme C (2003) New insight in the cyclic voltammetric behaviour of nickel in molten carbonate. J Electroanal Chem 545:7–17CrossRefGoogle Scholar
  18. 18.
    Yoshioka C, Urushibata H (1997) Simulation of cathode dissolution and shorting for molten carbonate fuel cells. J Electrochem Soc 144(3):815–822Google Scholar
  19. 19.
    Yoshikawa M, Mugikura Y, Watanabe T, Kahara T, Mizukamib T (2001) NiO cathode dissolution and Ni precipitation in Li/Na molten carbonate fuel cells. J Electrochem Soc 148(11):A1230–A1238CrossRefGoogle Scholar
  20. 20.
    Morita H, Kawase M, Mugikura Y, Asano K (2010) Degradation mechanism of molten carbonate fuel cell based upon long term performance. J Power Sources 195:6988–6996CrossRefGoogle Scholar
  21. 21.
    Giorgi L, Carewskaa M, Patriarcaa M, Scaccia S, Simonetti E, Bartolomeob AD (1994) Development and characterization of novel cathode for MCFC. J Power Sources 49:227–243CrossRefGoogle Scholar
  22. 22.
    Kaun TD, Fannon TM, Baumert BA (1984) Solubility of proposed cathode materials for molten carbonate fuel cells. 166th Electrochem Soc Meet 84–2:76–77Google Scholar
  23. 23.
    Plomp L, Veldhuis JBJ, Sitters EF, van der Molen SB (1992) Improvement of molten-carbonate lifetime. J Power Sources 39:369–373CrossRefGoogle Scholar
  24. 24.
    Plomp L, Sitters EF, Vessies C, Eckes FC (1991) Polarization characteristics of novel MCFC cathodes. J Electrochem Soc 138(2):629–630CrossRefGoogle Scholar
  25. 25.
    Wijayasinghe A (2004) Development and characterisation of cathode materials for the molten carbonate fuel cell. Doctoral Dissertation Royal Institute of Technology, Stockholm, Available at kth.diva-portal.org/smash/get/diva2:9666/FULLTEXT01. Accessed May 2012
  26. 26.
    Kucera GH, Brown AP, Roche MF, Indacochea EJ, Krumplet M, Myles KM (1993) Cathode materials for MCFCs. American Chem Soc Meet OSTI USAGoogle Scholar
  27. 27.
    Bloom I, Lanagan MT, Krumpelt M, Smith JL (1999) The Development of LiFeO2–LiCoO2–NiO cathodes for molten carbonate fuel cells. J Electrochem Soc 146(4):1336–1340CrossRefGoogle Scholar
  28. 28.
    Smith JL, Kucera GH, Brown AP (1990) Development of cathode materials and structures for the molten carbonate fuel cell. Proc. 2nd Symp Molten Carbonate Fuel Cell Tech (eds), JR Selman, DA Shores, HC Maru, and I Uchida, Electrochem Soc 90(16):226–246Google Scholar
  29. 29.
    Makkus RC, Hemmes K, de Wit JHW (1994) A comparative study of NiO(Li), LiFeO2, and LiCoO2 porous cathodes for molten carbonate fuel cells. J Electrochem Soc 141(12):3429–3438CrossRefGoogle Scholar
  30. 30.
    Antolini E (2004) LiCoO2: Fromation, structure, lithium and oxygen nonstoichchiometry. Solid State Ion 170:159–171CrossRefGoogle Scholar
  31. 31.
    Lundblad A, Schwartz S, Bergman B (2000) Effect of sintering procedures in development of LiCoO cathodes. J Power Sources 90:224–230CrossRefGoogle Scholar
  32. 32.
    Bergman B (2001) Contact corrosion resistance between the cathode and current collector plate in the molten carbonate fuel cell. J Electrochem Soc 148(1):A38–A43CrossRefGoogle Scholar
  33. 33.
    Bloom I, Kaun TD, Lanagan MT, Krumpelt M (1998) MCFC component development at ANL. Available at http://www.osti.gov/bridge/servlets/purl/10727-n8Z6af/webviewable/10727.pdf. Accessed 23 Nov 2011
  34. 34.
    Wijaysinghe A, Lagergren C, Bergmen B (2011) LiFeO–LiCoO–NiO cathodes for molten carbonate fuel cells. Fuel Cells 2:181–188CrossRefGoogle Scholar
  35. 35.
    Wijaysinghe A, Bergmen B, Lagergren C (2006) LiFeO2–LiCoO2–NiO materials for molten carbonate fuel cell cathodes. Part I: Powder synthesis and material characterization. Solid State Ion 177(1–2):165–173CrossRefGoogle Scholar
  36. 36.
    Wijaysinghe A, Bergmen B, Lagergren C (2006) LiFeO2–LiCoO2–NiO materials for molten carbonate fuel cell cathodes. Part II: Fabrication and characterization of porous gas diffusion cathodes. Solid State Ion 177(1–2):175–184CrossRefGoogle Scholar
  37. 37.
    Zecheva E, Stoyanova R (1993) Stabilization of the layered crystal structure of LiNiO2 by Co substitution. Solid State Ion 66:143–149CrossRefGoogle Scholar
  38. 38.
    Escudero MJ, Novova XR, Rodrigo T, Daza L (2002) Study of a Li–Ni oxide mixture as a novel cathode for molten carbonate fuel cells by electrochemical impedance spectroscopy. J Appl Electrochem 32:929–936CrossRefGoogle Scholar
  39. 39.
    Delmas C, Saadoune I (1992) Electrochemical and physical properties of the LixNi1−yCoyO2 phases. Solid State Ion 370:53–56Google Scholar
  40. 40.
    Ganesan P, Colon H, Haran B, White R, Popov BN (2002) Study of cobalt-doped lithium–nickel oxides as cathodes for MCFC. J Power Sources 111:109–120CrossRefGoogle Scholar
  41. 41.
    Kim SG, Yoon SP (2004) A study on the chemical stability and electrode performance of modified NiO cathodes for molten carbonate fuel cells. Electrochim Acta 49:3081–3089CrossRefGoogle Scholar
  42. 42.
    Kim MH, Hong MZ, Kim YS, Park E, Lee H, Ha W (2006) Cobalt and cerium coated Ni powder as a new candidate cathode material for MCFC. Electrochim Acta 51:6145–6151CrossRefGoogle Scholar
  43. 43.
    Kim YS, Yi CW, Choi HS, Kim K (2011) Modification of Ni-based cathode material for molten carbonate fuel cells using Co3O4. J Power Sources 196:1886–1893CrossRefGoogle Scholar
  44. 44.
    Huang B, Li F, Yu Q, Chen G, Zhao B, Hu K (2004) Study of NiO cathode modified by ZnO additive for MCFC. J Power Sources 128:135–144CrossRefGoogle Scholar
  45. 45.
    Escudero MJ, Nova XR, Rodrigo T, Daza L (2002) Influence of lanthanum oxide as quality promoter on cathodes for MCFC. J Power Sources 106:196–205CrossRefGoogle Scholar
  46. 46.
    Liu ZP, Guo PY, Zheng CL (2007) Effect of Dy on the corrosion of NiO/Ni in molten (0.62Li, 0.38 K)2CO3. J Power Sources 166:348–353CrossRefGoogle Scholar
  47. 47.
    Huang B, Ye X, Wang S, Yu Q, Nei H, Hu Q, Shi J, Hu K, Wen T (2006) Electrochemical performance of Y2O3/NiO cathode in the molten Li0.62/K0.38 carbonates eutectics. Mater Res Bull 41:1935–1948CrossRefGoogle Scholar
  48. 48.
    Simonetti E, Presti RL (2006) Characterization of Ni porous electrode covered by a thin film of LiMg0.05Co0.95O2. J Power Sources 160:816–820CrossRefGoogle Scholar
  49. 49.
    Mansour C, Pauporté T, Ringuedé A, Albin V, Cassir M (2006) Protective coating for MCFC cathode: low temperature potentiostatic deposition of CoOOH on nickel in aqueous media containing glycine. J Power Sources 156(1):23–27CrossRefGoogle Scholar
  50. 50.
    Escuderoa MJ, Rodrigob T, Mendozac L, Cassirc M, Dazaa L (2005) Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide: I. A structural and morphological study. J Power Sources 140(1):81–87CrossRefGoogle Scholar
  51. 51.
    Fukui T, Ohara S, Okawa H, Hotta T, Naito M (2000) Properties of NiO cathode coated with lithiated Co and Ni solid solution oxide for MCFCs. J Power Sources 86:340–346CrossRefGoogle Scholar
  52. 52.
    Kuk ST, Song YS, Kim K (1999) Properties of a new type of cathode for molten carbonate fuel cells. J Power Sources 83:50–56CrossRefGoogle Scholar
  53. 53.
    Brenscheidt Th, Nitschke F, Sollner O, Wendt H (2001) Molten carbonate fuel cell research II. Comparing the solubility and the in-cell mobility of the nickel oxide cathode material in lithium/potassium and lithium/sodium carbonate melts. Electrochim Acta 46(6):83–797CrossRefGoogle Scholar
  54. 54.
    Paoletti C, Carewska M, Presti R, Mc Phail S, Simonetti E, Zaza F (2009) Performance analysis of new cathode materials for molten carbonate fuel cells. J Power Sources 193:292–297CrossRefGoogle Scholar
  55. 55.
    Kuk ST, Song YS, Suh SI, Kim JY, Kim K (2001) The formation of LiCoO2 on a NiO cathode for a molten carbonate fuel cell using electroplating. J Mat Chem 11:630–635CrossRefGoogle Scholar
  56. 56.
    Mendoza L, Albin V, Cassir M, Galtayries A (2003) Electrochemical deposition of Co3O4 thin layers in order to protect the nickel-based molten carbonate fuel cell cathode. J Electroanal Chem 548:95–107CrossRefGoogle Scholar
  57. 57.
    Mendoza L, Ringuede´ A, Cassir M, Galtayries A II. Structural, morphological, chemical and electrochemical analysis of nickel covered by electrochemically deposited Co3O4 in molten Li2CO3–Na2CO3 at 650 °C. J Electroanal Chem 576 1:147–160Google Scholar
  58. 58.
    Mansour C, Pauporté T, Ringuedé AV, Cassir M (2006) Protective coating for MCFC cathode: low temperature potentiostatic deposition of CoOOH on nickel in aqueous media containing glycine. J Power Sources 156(1):23–27CrossRefGoogle Scholar
  59. 59.
    Ganesan P, Colon H, Haran B, Popov BN (2003) Performance of La0.8Sr0.2CoO3 coated NiO as cathodes for molten carbonate fuel cells. J Power Sources 115:12–18CrossRefGoogle Scholar
  60. 60.
    Soler J, González T, Escudero MJ, Rodrigo T, Daza L (2002) Endurance test on a single cell of a novel cathode material for MCFC. J Power Sources 106:189–195CrossRefGoogle Scholar
  61. 61.
    Song S, Jang S-C, Han J, Yoon SP, Nam SWOhI, Lim T (2011) Enhancement of cell performance using a gadolinium strontium cobaltite coated cathode in molten carbonate fuel cells. J Power Sources 196:9900–9905CrossRefGoogle Scholar
  62. 62.
    Tanimoto K, Miyazaki Y, Yanagida M, Tanase S, Kojima T, Ohtori N, Okuyama H, Kodama T (1992) Cell performance of molten-carbonate fuel cell with alkali and alkaline–earth carbonate mixtures. J Power Sources 39:285–297CrossRefGoogle Scholar
  63. 63.
    Tanimoto K, Kojima T, Yanagida M, Nomura K, Miyazaki Y (2004) Optimization of the electrolyte composition in a (Li0.52Na0.48)2−2xAExCO3 (AE = Ca and Ba) molten carbonate fuel cell. J Power Sources 131:256–260CrossRefGoogle Scholar
  64. 64.
    Matsuzawa K, Tatezawa G, Matsuda Y, Mitsushima S, Kamiya N, Ota K (2005) Effects of rare-earth additives in Li/Na eutectic carbonate. Electrochem Soc 152(6):A1116–A1120CrossRefGoogle Scholar
  65. 65.
    Matsuzawa K, Mizusaki T, Mitsushima S, Kamiya N, Ota K (2005) The effect of La oxide additive on the solubility of NiO in molten carbonates. J Power Sources 140:258–263CrossRefGoogle Scholar
  66. 66.
    Scaccia S, Frangini S, Dellepiane S (2008) Enhanced O2 solubility by RE2O3. J Mol Liq 138:107–112CrossRefGoogle Scholar
  67. 67.
    Escudero MJ, Rodrigo T, Daza L (2005) Molten carbonate fuel cell cathodes: improvement of the electrocatalytic activity. Catal Today 107–108:377–387CrossRefGoogle Scholar
  68. 68.
    Odemondo V, Dellepiane S, Bampi R, Capobianco P (2009) Molten carbonate fuel cell performance under different cathode conditions. J App Electrochem 39:2123–2128CrossRefGoogle Scholar
  69. 69.
    Bergaglio E, Capobianco P, Dellepiane S, Durante G, Scagliotti M, Valli C (2006) MCFC cathode dissolution: an alternative approach to face the problem. J Power Sources 160:796–799CrossRefGoogle Scholar
  70. 70.
    Larminie J, Dicks A (2008) Fuel cell systems explained. Wiley, New YorkGoogle Scholar
  71. 71.
    Selman JR (2006) Molten-salt fuel cells—technical and economic challenges. J Power Sources 160(6):852–857CrossRefGoogle Scholar
  72. 72.
    Yuh C, Johnsen R, Farooque M, Maru H (1995) Status of carbonate fuel cell materials. J Power Sources 56:1–10CrossRefGoogle Scholar
  73. 73.
    Iacovagelo CD (1986) Stability of molten carbonate fuel cell nickel anodes. Electrochem Soc 133:2410–2415CrossRefGoogle Scholar
  74. 74.
    Kim YS, Lim JH, Chun HS (2006) Creep mechanism of porous MCFC Ni anodes strengthened by Ni3Al. AIChE J 52(1):359–365CrossRefGoogle Scholar
  75. 75.
    Jung D, Lee I, Lim H, Lee D (2003) On the high creep resistant morphology and its formation mechanism in Ni–10 wt.% Cr anodes for molten carbonate fuel cells. Mater Chem 13:1717–1722CrossRefGoogle Scholar
  76. 76.
    Kim G, Moon Y, Lee D (2002) Preparation of Ni–5 wt% Al alloy. J Power Sources 104:181–189CrossRefGoogle Scholar
  77. 77.
    Hwang ER, Park JW, Kim YD, Kim SJ, Kang SG (1997) Effect of alloying elements on the copper-base anode for molten carbonate fuel cells. J Power Sources 69:55–60CrossRefGoogle Scholar
  78. 78.
    Vielstich W, Lamm A, Gasteiger HA (eds) (2007) Handbook of fuel cells—fundamentals technology and application. Wiley, HokebenGoogle Scholar
  79. 79.
    Wee J, Song D, Jun C, Lim T, Hong S, Lim H, Lee K (2005) Evaluation of Ni–Ni3Al(5 wt.%)–Al(3 wt.%) as an anode electrode for molten carbonate fuel cell Part I: Creep and sintering resistance. J Alloys Compd 390:155–160CrossRefGoogle Scholar
  80. 80.
    Wee J, Lee K (2006) Overview of the effects of rare-earth elements used as additive materials in molten carbonate fuel cell systems. J Mater Sci 41:3585–3592CrossRefGoogle Scholar
  81. 81.
    Andreas Bodén (2007) Ph.D. thesis. The anode and the electrolyte in the MCFC. KTH Chemical Science and Engineering, Stockholm, Available at kth.diva-portal.org/smash/get/diva2:12059/FULLTEXT01. Accessed May 2012
  82. 82.
    Hong S, Oh I, Lim T, Nam S, Ha H, Yun SP, Han J, Kang BS (2004) Anode for molten carbonate fuel cell coated with porous ceramic films. US Patent 6834913Google Scholar
  83. 83.
    Wee J (2006) Creep and sintering resistance of a Ce added anode. Mater Chem Phys 98:273–278CrossRefGoogle Scholar
  84. 84.
    Wee J (2007) Effect of cerium addition to Ni–Cr anode electrode for molten carbonate fuel cells: surface fractal dimensions. Mater Chem Phys 101(2–3):322–328CrossRefGoogle Scholar
  85. 85.
    Yoshikawa M, Bodén A, Sparr M, Lindbergh G (2006) Experimental determination of effective surface area and conductivities in the porous anode of molten carbonate fuel cell. J Power Sources 158:94–102CrossRefGoogle Scholar
  86. 86.
    Youn JY, Yoon SP, Han J, Nam SW, Lim T, Hong S, Lee KY (2006) Fabrication and characteristics of anode as an electrolyte reservoir for MCFC. J Power Sources 157:121–127CrossRefGoogle Scholar
  87. 87.
    Cavallaro S, Freni S, Cannistraci R, Aquino M, Giordanoj N (1992) Alkali effect on the MCFC internal reforming catalysts life. Int J Hydrog Energy 17(3):181–186CrossRefGoogle Scholar
  88. 88.
    Dicks AL (1998) Advances in catalysts for internal reforming in high temperature fuel cells. J Power Sources 71:111–122CrossRefGoogle Scholar
  89. 89.
    Clarke SH, Dicks AL, Pointon K, Smith TA, Swann A (1997) Catalytic aspects of the steam reforming of hydrocarbons. Catal Today 38(4):1–423CrossRefGoogle Scholar
  90. 90.
    Katikaneni S, Yuh C, Abens S, Farooque M (2002) The direct carbonate fuel cell technology: advances in multi-fuel processing and internal reforming. Catal Today 77:99–106CrossRefGoogle Scholar
  91. 91.
    Berger RJ, Doesburg EBM, Ommen JG (1996) The direct carbonate fuel cell technology: advances in multi-fuel processing and internal reforming. J Electrochem Soc 14:3186–3191CrossRefGoogle Scholar
  92. 92.
    Moon HD, Lim TH, Lee HI (1999) Chemical poisoning of Ni/MgO catalyst by alkali carbonate vapor in the steam reforming reaction of DIR-MCFC. Bull Kor Chem Soc 20:1413–1417Google Scholar
  93. 93.
    Gaskell DR (2003) Introduction to the thermodynamics of materials. Taylor & Francis, New YorkGoogle Scholar
  94. 94.
    Matsumura M, Hirai C (1998) Deterioration mechanism of direct internal reforming catalysts. J Chem Eng Jpn 31:734–740CrossRefGoogle Scholar
  95. 95.
    Choi J, Kwon H, Lim T, Hong S, Lee H (2004) Development of nickel catalyst supported on MgO–TiO2. Catal Today 93–95:553–560CrossRefGoogle Scholar
  96. 96.
    Takeguchi T, Kani Y, Yanoa T, Kikuchia R, Eguchia K, Tsujimotob K, Uchidac Y, Uenoc A, Omoshikic K, Aizawac M (2002) Study on steam reforming of CH4 and hydrocarbons. J Power Sources 112:588–595CrossRefGoogle Scholar
  97. 97.
    Nakagawa N (2001) Catalytic activity of Ni–YSZ–CeO2 anode for the steam reforming of methane. J Power Sources 92(1–2):88–94CrossRefGoogle Scholar
  98. 98.
    Choi J, Yun J, Kwon H, Lim T, Hoang S, Lee H (2005) Effect of lithium carbonate on nickel catalysts for direct internal reforming MCFC. J Power Sources 145:652–658CrossRefGoogle Scholar
  99. 99.
    Park DS, Li Z, Devianto H, Lee H (2010) Characteristics of alkali-resistant Ni/MgAl2O4catalyst for direct internal reforming molten carbonate fuel cell. Int J Hydrog Energy 35(11):5673–5680CrossRefGoogle Scholar
  100. 100.
    Shin YJ, Moon HD, Lim T, Lee H (2000) Effects of Gd2O3 doping and steam/carbon ratio on the activity of the catalyst for internal steam reforming in molten carbonate fuel cell. Stud Surf Sci Catal 130:431–436CrossRefGoogle Scholar
  101. 101.
    Zhang J, Zhang X, Tu M, Liu W, Liu H, Qiu J, Zhou L, Shao Z, Ho HL, Yeung KL (2012) Preparation of core (Ni base)–shell (Silicalite-1) catalysts and their application for alkali resistance in direct internal reforming molten carbonate fuel cell. J Power Sources 198:14–22CrossRefGoogle Scholar
  102. 102.
    Fang B, Liu X, Wang X, Duan S (1998) Surface modification of a MCFC anode by electrodeposition of niobium. J Electroanal Chem 441:1–3CrossRefGoogle Scholar
  103. 103.
    Devianto H, Yoon SP, Nam SW, Han J, Lim T (2006) The effect of a ceria coating on the H2S tolerance of anode. J Power Sources 159:1147–1152CrossRefGoogle Scholar
  104. 104.
    Yoon SP, Han J, Nam S, Lim TH, Oh I, Devianto H, Lee H, Ham HC, Kim YC (2008) MCFC anode for internal reforming of ethanol, manufacturing process thereof. US patent 0241611Google Scholar
  105. 105.
    Zhu WZ, Deev SC (2003) A review on the status of anode materials for solid oxide fuel cells. Mater Sci Eng 362(1–2):228–239Google Scholar
  106. 106.
    Tagawa T, Yanase A, Goto S, Yamaguchi M, Kondo M (2004) Ceramic anode catalyst for dry methane type molten carbonate fuel cell. J Power Sources 126:1–7CrossRefGoogle Scholar
  107. 107.
    Antolini E (2011) The stability of molten carbonate fuel cell electrodes: a review of recent improvements. Appl Energy 88:4274–4293CrossRefGoogle Scholar
  108. 108.
    Parizotto NV, Rocha KO, Damyanova S, Passos FB, Zanchet D, Marques CMP, Bueno JMC (2007) Alumina-supported Ni catalysts modified with silver for the steam reforming of methane: effect of Ag on the control. Appl Catal 330:12–22CrossRefGoogle Scholar
  109. 109.
    Li Z, Devianto H, Kwon H, Yoon SP, Lim T, Lee H (2010) The catalytic performance of Ni/MgSiO3 catalyst for methane steam reforming in operation of direct internal reforming MCFC. J Ind Eng Chem 16:485–489CrossRefGoogle Scholar
  110. 110.
    Baker B (1989) Fuel Cell apparatus for internal reforming. US Patent 4877693Google Scholar
  111. 111.
    Lacovangelo CV, Pasco WD (1988) Hot-roll-milled electrolyte structures for molten carbonate fuel cells. J Electrochem Soc 135:221–224CrossRefGoogle Scholar
  112. 112.
    Bohme O, Leidich FU, Salge HJ, Wendt H (1994) Development of materials and production technologies for molten carbonate fuel cells. Int J Hydrog Energy 19(4):349–355CrossRefGoogle Scholar
  113. 113.
    Zhou L, Lin H, Yi B (2007) Sintering behavior of porous α-lithium aluminate matrices in molten carbonate fuel cells at high temperature. J Power Sources 164:24–32CrossRefGoogle Scholar
  114. 114.
    Morita H, Komodab M, Mugikuraa Y, Izakia Y, Watanabea T, Masudac Y, Matsuyamac T (2002) Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte. J Power Sources 112(2):509–518CrossRefGoogle Scholar
  115. 115.
    Yoshiba F, Morita H, Yoshikawa M, Mugikura Y, Nakanishi A, Mizukami T, Takahashi K, Masuda Y (2003) Development of practical molten carbonate fuel cell stack applying Li/Na carbonate electrolyte, Japan Science and Technology Agency, Available at: http://sciencelinks.jp/j-east/article/200401/000020040103A0864964.php. Accessed 23 Nov 2011
  116. 116.
    Murai M, Takizawa K, Soejima K, Sotouchi H (1996) Crystal growth of lithium aluminate in molten Li/K carbonates. J Electrochem Soc 143:2776–2783CrossRefGoogle Scholar
  117. 117.
    Takizawa K, Hagiwara A (2002) The transformation of LiAlO2 crystal structure in molten Li/K carbonate. J Power Sources 109(1):127–135CrossRefGoogle Scholar
  118. 118.
    Tomimatsu N, Ohzu H, Akasaka Y, Nakagawa K (1997) Phase stability of LiAlO2 in molten carbonate. J Electrochem Soc 144(12):4182–4186CrossRefGoogle Scholar
  119. 119.
    Terada S, Nagashima I, Higaki K, Ito Y (1998) Stability of LiAlO2 as electrolyte matrix for molten carbonate fuel cells. J Power Sources 75:223–229CrossRefGoogle Scholar
  120. 120.
    Terada S, Higaki K, Nagashima I, Ito Y (1999) Addition of potassium tungstate to the electrolyte of a molten carbonate fuel cell. J Power Sources 83:178–185CrossRefGoogle Scholar
  121. 121.
    Bartra VS, Maudgal S, Bali S, Tewari PK (2002) Addition of potassium tungstate to the electrolyte of a molten carbonate fuel cell. J Power Sources 112:322–325CrossRefGoogle Scholar
  122. 122.
    Bergaglio E, Sabattini A, Capobianco P (2005) Research and development on porous components for MCFC applications. J Power Sources 149:63–65CrossRefGoogle Scholar
  123. 123.
    Ferrari E, Ghisolfi E, Amelio C, Baccaro S (2011) MCFC matrix: a comparison between the traditional tape casting process and the upgraded plastic extrusion technology set up by FN. Int J Hydrog Energy 36:8094–8097CrossRefGoogle Scholar
  124. 124.
    Hyun SH, Cho SC, Cho JY, Ko DH (2001) Reinforcement of molten carbonate fuel cell matrixes by adding rod-shaped. J Mater Sci 36:441–450CrossRefGoogle Scholar
  125. 125.
    Kim S, Hyun S, Lim TH, Hong SA (2004) Effective fabrication method of rod-shaped LiAlO2 particles for molten carbonate fuel cell matrices. J Power Sources 137:24–29CrossRefGoogle Scholar
  126. 126.
    Li I, Kim W, Moon Y, Lim H, Lee D (2001) Influence of aluminium salt addition on in situ sintering of electrolyte matrices for molten carbonate fuel cells. J Power Sources 101:90–95CrossRefGoogle Scholar
  127. 127.
    Kim J, Patil K, Han J, Yoon SP, Nam S, Lim T, Hong S, Kim H, Lim H (2009) Using aluminum and Li2CO3 particles to reinforce the α-LiAlO2 matrix for molten carbonate fuel cells. Int J Hydrog Energy 34:9227–9232CrossRefGoogle Scholar
  128. 128.
    Choi HJ, Lee JJ, Hyun SH, Lim HC (2010) Phase and microstructural stability of electrolyte matrix materials for molten carbonate fuel cells. Fuel Cells 10(4):613–618CrossRefGoogle Scholar
  129. 129.
    Patil KY, Yoon SP, Han J, Lim T, Nam SW, Oh I, Hong S (2011) Phase stabilities in molten Li/K carbonate of efficient matrix materials for molten carbonate fuel cells: thermodynamic calculations and experimental investigations. J Mater Sci 46:2557–2567CrossRefGoogle Scholar
  130. 130.
    Zhu B, Liu X, Zhou P, Yang X, Zhu Z, Zhu W (2001) Innovative solid carbonate–ceria composite electrolyte fuel cells. Electrochem Commun 3:566–571CrossRefGoogle Scholar
  131. 131.
    McPhail SJ (2010) Status and challenges of molten carbonate fuel cells. Adv Sci Tech 72:283–290CrossRefGoogle Scholar
  132. 132.
    Frangini S, Moreno A, Zaza F (2010) Solutions for material corrosion problems in MCFC. Adv Sci Tech 72:291–298CrossRefGoogle Scholar
  133. 133.
    Zhu B, Lindbergh G, Simonsson D (1998) Comparison of electrochemical and surface characterisation methods for investigation of corrosion of bipolar plate materials in molten carbonate fuel cell: Part I. Electrochemical study. Corros Sci 41:1497–1513CrossRefGoogle Scholar
  134. 134.
    Spigel M, Biedenkopf P, Grabke HJ (1997) Corrosion of iron base alloy and high alloy steels in the Li2CO3–K2CO3 eutectic mixture. Corros Sci 39(7):1193–1210CrossRefGoogle Scholar
  135. 135.
    Frangini S (2006) Testing procedure to obtain reliable potentiodynamic polarization curves on type 310 S stainless steel in alkali carbonate melts. Mater Corros 57(4):330–337CrossRefGoogle Scholar
  136. 136.
    Donado RA, Marianowskiru LG, Maru HC (1984) Corrosion of the wet-seal area in molten carbonate fuel cells. J Electrochem Soc 131(11):2535–2540CrossRefGoogle Scholar
  137. 137.
    Yuh C, Colpetzer J, Dickson K, Farooque M, Xu G (2006) Carbonate fuel cell materials. J Mater Eng Perform 15(4):457–462CrossRefGoogle Scholar
  138. 138.
    Yuh C, Hilmi A, Farooque M, Leo T, Xu G (2009) Direct fuel cell materials experience. ECS Trans 17(1):637–654CrossRefGoogle Scholar
  139. 139.
    Huijsmans JPP, Kraaij GJ, Makkus RC, Rietveld G, Sitters EF, Reijers HThJ (2000) An analysis of endurance issues for MCFC. J Power Sources 86:117–121CrossRefGoogle Scholar
  140. 140.
    Durante G, Vegnia S, Capobianco P, Golgovici F (2005) High temperature corrosion of metallic materials in molten carbonate fuel cells environment. J Power Sources 152(1):204–209CrossRefGoogle Scholar
  141. 141.
    Frangini S, Loreti S (2007) The role of alkaline-earth additives on the molten carbonate corrosion of 316 L stainless steel. Corros Sci 49:3969–3987CrossRefGoogle Scholar
  142. 142.
    Colón-Mercado H, Ganesan P, Popov B (2007) Performance studies of bare and Co-plated titanium alloy as cathode current collector in molten carbonate fuel cell (MCFC). Surf Coat Technol 201:6452–6459CrossRefGoogle Scholar
  143. 143.
    Vossen JPT, Plomp L, Wit JHW, Rietveid G (1995) Corrosion behavior of stainless steel and nickel-base alloys in molten carbonate. J Electrochem Soc 142(10):3327–3335CrossRefGoogle Scholar
  144. 144.
    Biedenkopf P, Bischoff MM, Wochner T (2000) Corrosion phenomena of alloys and electrode materials in molten carbonate fuel cells. Mater Corros 51:287–302CrossRefGoogle Scholar
  145. 145.
    Parezanović I, Strauch E, Spiegel M (2004) Development of spinel forming alloys with improved electronic conductivity for MCFC applications. J Power Sources 135:52–61CrossRefGoogle Scholar
  146. 146.
    Randström S, Lagergren C, Capobianco P (2006) Corrosion of anode current collectors in molten carbonate fuel cells. J Power Sources 160:782–788CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.CSIRO Energy TechnologyVICAustralia

Personalised recommendations