Skip to main content
Log in

Electrodeposition of selenium from 1-ethyl-3-methyl-imidazolium trifluromethylsulfonate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrodeposition of thin selenium (Se) films from 1-ethyl-3-methyl-imidazolium trifluromethylsulfonate at room and elevated temperatures on gold and on copper substrates was studied under open-air conditions. The effect of bath temperature on the composition and structure of the deposited films was examined using cyclic voltammetry, chemical analysis and X-ray diffraction analysis. The obtained results showed that on gold substrate and at room temperature, a reddish Se film grows mainly in amorphous, monoclinic, rhombohedral and hexagonal structure, while at temperatures ≥90 °C, a grayish film of hexagonal and rhombohedral structure is deposited. Photoelectron spectroscopy shows that both films consist of pure Se with only slight surface contaminations by remnants from the electrodeposition. Due to the differences in phase structure and the presence of the monoclinic phase, the reddish films showed higher light absorbance. The band gap of the reddish film is close to that of pure amorphous Se reported in literature. Deposition on copper substrate leads to formation of CuSe and CuSe2 at room temperature and at 70 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chan C, Lam H, Surya C (2010) Sol Energ Mat Sol C 94:207–211

    Article  CAS  Google Scholar 

  2. Schock H (1996) Appl Surf Sci 92:606–616

    Article  CAS  Google Scholar 

  3. Pola J, Bastl Z, Slubrt J, Ouchi A (2000) Appl Organometal Chem 14:715–720

    Article  CAS  Google Scholar 

  4. Bichsel R, Lévy F, Mathieu H (1985) Thin Solid Films 13:87–94

    Article  Google Scholar 

  5. Chatterjee E, Gupta S (1986) J Mater Sci Lett 5:559–561

    Article  CAS  Google Scholar 

  6. Nandhakumar I, Elliott J, Attard G (2001) Chem Mater 13:3840–3842

    Article  CAS  Google Scholar 

  7. Santos M, Machado S (2004) J Electroanal Chem 567:203–210

    Article  CAS  Google Scholar 

  8. Solaliendres M, Manzoli A, Salazar-Banda G, Equiluz K, Tanimoto S, Machado S (2008) J Solid State Electrochem 12:679–686

    Article  CAS  Google Scholar 

  9. Sorenson T, Lister T, Huang M, Stickney J (1999) J Electroanal Chem 146:1019–1027

    Article  CAS  Google Scholar 

  10. Cabral M, Pedrosa V, Machado S (2010) Electrochim Acta 55:1184–1192

    Article  CAS  Google Scholar 

  11. Lai Y, Liu F, Li J, Zhang Z, Liu Y (2010) J Electroanal Chem 639:187–192

    Article  CAS  Google Scholar 

  12. Endres F, MacFarlane D, Abbott A (2008) Electrodeposition from Ionic Liquids. Wiley–VCH, Weinheim

    Book  Google Scholar 

  13. Zein El Abedin S, Farag H, Moustafa E, Welz-Biermann U, Endres F (2005) Phys Chem Chem Phys 7:2333–2339

    Article  CAS  Google Scholar 

  14. Gazlinski M, Lewandowski A, Stepniak I (2006) Electrochim Acta 51:5567–5580

    Article  Google Scholar 

  15. Zein El Abedin S, Saad AY, Farag H, Borisenko N, Liu Q, Endres F (2007) Electrochim Acta 52:2746–2754

    Article  CAS  Google Scholar 

  16. Steichen M, Dale P (2011) Electrochem Commun 13:865–868

    Article  CAS  Google Scholar 

  17. Abdel Aal A, Voigts F, Chakarov D, Endres F (2012) Electrochim Acta 59:228–236

    Article  CAS  Google Scholar 

  18. Shirley D (1972) Phys Rev B 5:4709–4714

    Article  Google Scholar 

  19. Scofield J (1976) J Electron Spectr Rel Phenom 8:129–137

    Article  CAS  Google Scholar 

  20. Seah M, Dench W (1979) Surf Interface Anal 1:2–11

    Article  CAS  Google Scholar 

  21. Reilman R, Msezane A, Manson S (1976) J Electron Spectr Rel Phenom 8:389–394

    Article  CAS  Google Scholar 

  22. Cojocaru A, Sima M (2012) Rev Chim (Bucharest) 63:217–223

    CAS  Google Scholar 

  23. Endres F, Höfft O, Borisenko N, Gasparotto L, Prowald A, Al-Salman R, Carstens T, Atkin R, Bund A, Zein El Abedin S (2010) Phys Chem Chem Phys 12:1724–1732

    Article  CAS  Google Scholar 

  24. Minaev V, Timoshenkova S, Kalugin V (2005) J Optoelectron Adv Mater 7:1717–1741

    CAS  Google Scholar 

  25. McCann D, Cartz L (1972) J Phys Chem 56:2552–255

    Article  CAS  Google Scholar 

  26. Prosser V, Henisch K (1966) Mat Res Bull 2:75–83

    Article  Google Scholar 

  27. Kubelka P, Munk F (1931) Tech Phys 12:593–601

    Google Scholar 

  28. Kubelk P (1948) J Opt Soc Am 38:448–457

    Article  Google Scholar 

  29. Pejova P, Grozdanov I (2001) Appl Surf Sci 177:152–157

    Article  CAS  Google Scholar 

  30. Low H, Sulz G, Lacher M, Kuhner G, Uptmoor G (1992) Sens Actuators B 9:215–219

    Article  Google Scholar 

  31. Klober J, Ludwig M, Schneider HA (1991) Sens Actuators B 3:69–74

    Article  Google Scholar 

  32. Murty N, Jawalekar S (1983) Thin Solid Films 102:283–289

    Article  CAS  Google Scholar 

  33. Oyabu T (1982) J Appl Phys 53:2785–2787

    Article  CAS  Google Scholar 

  34. Shenasa M, Sainkar S, Lichtman D (1986) J Electron Spectr Rel Phenom 40:329–337

    Article  CAS  Google Scholar 

  35. Dullweber T, Rau U, Miguel A, Noufi R, Hans-Werner S (2000) IEEE Trans Electron Dev 47:2249–2254

    Article  CAS  Google Scholar 

  36. Mishra K, Rajeshwar K (1989) J Electroanal Chem 271:279–294

    Article  CAS  Google Scholar 

  37. Skyllas-Kazacos M, Miller B (1980) J Electrochem Soc 127:869–873

    Article  Google Scholar 

  38. Pottier D, Maurin G (1989) J Appl Electrochem 19:361–367

    Article  CAS  Google Scholar 

  39. Ueno Y, Kawai H, Sugiura T, Minoura H (1988) Thin Solid Films 157:159–168

    Article  CAS  Google Scholar 

  40. Etienne A (1970) J Electrochem Soc 117:870–874

    Article  CAS  Google Scholar 

  41. Bottecchia O (1998) J Braz Chem Soc 9:515–520

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support by the Alexander von Humboldt and German research foundations (DFG) is gratefully acknowledged. The authors gratefully acknowledge experimental assistance by W. Gruber and C. Lehmann from TU Clausthal and by V. Gusak, M. Zäch and C. Langhammer from Chalmers University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Abdel Aal or F. Endres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel Aal, A., Voigts, F., Chakarov, D. et al. Electrodeposition of selenium from 1-ethyl-3-methyl-imidazolium trifluromethylsulfonate. J Solid State Electrochem 16, 3027–3036 (2012). https://doi.org/10.1007/s10008-012-1743-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1743-2

Keywords

Navigation