Skip to main content
Log in

Electrodeposition of Copper Selenide onto Mo Electrode in Tartaric Acid Solution

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Results are presented of a study of the electrochemical behavior of copper(II) and selenium(IV) ions and their joint reduction on a molybdenum electrode by cyclic voltammetry in a tartaric acid electrolyte. The potentiostatic deposition was used to obtain copper selenide deposits on Mo plates. The diffraction and energydispersive analyses demonstrated that a Cu2‒xSe compound is formed with an admixture of the CuSe phase. A suggestion is made that the process of underpotential reduction affects the formation of copper selenide. Copper selenide films were deposited at a potential of ‒0.6 V in the course of 30 min with a thickness of 0.43 μm and high adhesion to the substrate. At potentials in this range, an additional amount of the deposit may be formed due to the chemical reaction between Cu+ and Se2‒ ions. The p-type conduction was determined for films electrodeposited at various potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Urazov, K.A. and Dergacheva, M.B., Eurasian Chem. Tech. J., 2009, vol. 11, pp. 9–11.

    Google Scholar 

  2. Chopra, K.L. and Das, S.R., Thin Film Solar Cells, Moscow: Mir, 1986, p.435.

    Google Scholar 

  3. Dergacheva, M.B., Gudeleva, N.N., and Urazov, K.A., Neft Gaz, 2016, no. 3, pp. 97–112.

    Google Scholar 

  4. Riha, S.C, Johnson, D.C., and Prieto, A.L., J. Am. Chem. Soc., 2011, vol. 133, pp. 1383–1390.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, W., Zhang, L., Chen, G., et al., Cryst. Eng. Comm., 2015, vol. 17, pp. 1975–1981.

    Article  CAS  Google Scholar 

  6. Xiao, G., Ning, J., Liu, Z., et al., Cryst. Eng. Comm., 2012, vol. 14, pp. 2139–2144.

    Article  CAS  Google Scholar 

  7. Hamilton, C.E., Flood, D.J., and Barron, A.R., Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 3930–3938.

    Article  CAS  PubMed  Google Scholar 

  8. Seo, Y.H., Lee, B.S., Jo, Y., et al., ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 6930–6936.

    Article  CAS  PubMed  Google Scholar 

  9. Low, K.H., Li, C.H., Roy, V.A.L., et al., Chem. Sci., 2010, vol. 1, pp. 515–518.

    Article  Google Scholar 

  10. Wang, Z., Peng, F., Wu, Y., et al., Cryst. Eng. Comm., 2012, vol. 14, pp. 3528–3533.

    Article  CAS  Google Scholar 

  11. Chen, D., Chen, G., Jin, R., and Xu, H., Cryst. Eng. Comm., 2014, vol. 16, pp. 2810–2817.

    Article  CAS  Google Scholar 

  12. Gu Y., Su Y., Chen D. et al., Cryst. Eng.Comm., 2014, vol. 16, pp. 9185–9190.

    Article  CAS  Google Scholar 

  13. Hessel, C.M., Pattani, V.P., Rasch, M., et al., Nano Lett., 2011, vol. 11, pp. 2560–2566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kois, J., Beresnev, S., Mellikov, E., and Opik, A., Thin Solid Films, 2006, vols. 511–512, pp. 420–424.

    Article  CAS  Google Scholar 

  15. Liu, T.-Ch., Hu, Yi, and Chang, W.-B., Mater. Sci. Eng., 2014, vol. 180, pp. 33–37.

    Article  CAS  Google Scholar 

  16. Shinde, S.K., Ghodake, G.S., Dubal, D.P., et al., J. Taiwan Inst. Chem. Eng., 2017, vol. 75, pp. 271–279.

    Article  CAS  Google Scholar 

  17. Lee, W., Jeong, S., Myung, N., et al., Bull. Korean Chem. Soc., 2013, vol. 34, no. 10, pp. 3113–3119.

    Article  CAS  Google Scholar 

  18. Dhasade, S.S., Thombare, J.V., Gaikwad, R.S., et al., Mater. Sci. Semicond. Process., 2015, vol. 30, pp. 48–55.

    Article  CAS  Google Scholar 

  19. Lee, W., Myung, N., Rajeshwar, K., and Lee, Ch-W., J. Electrochem. Sci. Technol., 2013, vol. 4, no. 4, pp. 140–145.

    Article  CAS  Google Scholar 

  20. Ghosh, A., Kulsi, C., Banerjee, D., and Mondal, A., Appl. Surface Sci., 2016, vol. 369, pp. 525–534.

    Article  CAS  Google Scholar 

  21. Moysiadou, A., Koutsikou, R., and Bouroushian, M., Mater. Lett., 2015, vol. 139, pp. 112–115.

    Article  CAS  Google Scholar 

  22. Kaur, H., Kaur, J., Singh, L., and Singh, S., Superlattices Microstruct., 2013, vol. 64, pp. 294–302.

    Article  CAS  Google Scholar 

  23. Cho, A., Ahn, S., Yun, J., et al., Thin Solid Films, 2013, vol. 546, pp. 299–307.

    Article  CAS  Google Scholar 

  24. Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Lur’e, Yu.Yu., Ed., Moscow: Khimiya, 1979.

  25. Danilov, A.I., Molodkina, E.B., Baitov, A.A., et al., Russ. J. Electrochem., 2002, vol. 38, no. 7, pp. 743–753.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Dergacheva.

Additional information

Original Russian Text © M.B. Dergacheva, A.E. Nurtazina, K.A. Urazov, N.N. Gudeleva, V.I. Yaskevich, V.P. Grigor’eva, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 5, pp. 664−670.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dergacheva, M.B., Nurtazina, A.E., Urazov, K.A. et al. Electrodeposition of Copper Selenide onto Mo Electrode in Tartaric Acid Solution. Russ J Appl Chem 91, 778–784 (2018). https://doi.org/10.1134/S1070427218050087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218050087

Navigation