Skip to main content
Log in

Ionic conductivity enhancement in the solid polymer electrolyte PEO9LiTf by nanosilica filler from rice husk ash

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 14 April 2013

Abstract

Rice husk ash is a cheap raw material available in abundance in rice-growing countries. It contains around 85–90 % amorphous silica. Rice husk ash, when subjected to a simple chemical precipitation method, will produce nanosilica which can be used for many industrial and technological applications. In this work, we have successfully synthesized nano-sized silica from local rice husk ash and prepared the nanocomposite solid polymer electrolyte, PEO9LiTf:SiO2. The resulting electrolyte has been characterized by X-ray diffraction, differential scanning calorimetry, atomic force microscopy, Fourier transform infrared spectroscopy, and complex impedance spectroscopy. The electrolyte shows about a 12-fold increase in ionic conductivity at room temperature due to the silica filler. In the nanocomposite electrolyte, nanosilica particles obtained from rice husk ash behaved very similarly to the commercial grade nanosilica and had a size distribution in the 25- to 40-nm range. As already suggested by us and by others, the O2− and OH surface groups in the filler surface interact with the Li+ ions and provide hopping sites for migrating Li+ ions through transient H bonding, creating additional high-conducting pathways. This would contribute to a substantial conductivity enhancement through increased ionic mobility. An additional contribution to conductivity enhancement, particularly at temperatures below 60 °C, appears to come from the increased fraction of the amorphous phase, as evidenced from the reduced crystallite melting temperature and the reduced enthalpy of melting due to the presence of the filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Weston JE, Steele BCH (1982) Solid State Ionics 7:75–79

    Article  CAS  Google Scholar 

  2. Gray FM (1997) In: Connor JA (ed) Polymer electrolytes. The Royal Society of Chemistry, Canterbury

    Google Scholar 

  3. Dissanayake MAKL, Jayathilake PARD, Bokalawela RSP, Albinson I, Mellander B-E (2003) J Power Sources 119–121:409–414

    Article  Google Scholar 

  4. Bandara LRAK, Dissanayake MAKL, Mellander B-E (1998) Electrochemica Acta 43:1447–1451

    Article  CAS  Google Scholar 

  5. Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Electrochemica Acta 46:2457–2461

    Article  CAS  Google Scholar 

  6. Jayathilake PARD, Dissanayake MAKL, Albinson I, Mellander B-E (2002) Electrochemica Acta 47:3257–3268

    Article  Google Scholar 

  7. Kelley IE, Owen JR, Steele BCH (1985) J Power Sources 14:13–21

    Article  Google Scholar 

  8. Lin CW, Hung CL, Venkateswarlu M, Hwang BJ (2005) J Power Sources 146:397–401

    Article  CAS  Google Scholar 

  9. Leo CJ, Subba Rao GV, Chowdari BVR (2002) Solid State Ionics 148:159–171

    Article  CAS  Google Scholar 

  10. Ahn J-H, Wang GX, Liu HK, Dou SX (2003) J Power Sources 119–121:422–426

    Article  Google Scholar 

  11. Kim YW, Lee W, Choi BK (2000) Electrochemica Acta 45:1473–1477

    Article  CAS  Google Scholar 

  12. Thuadaij N, Nuntiya A (2008) Synthesis and characterization of nanosilica from rice husk ash prepared by precipitation method. Chiang Mai J Sci 35(1):206–211

    CAS  Google Scholar 

  13. Wagner C (1933) Z Physik Chem B21:25–47

    CAS  Google Scholar 

  14. Kyung-Ryul L, Jong-Ho L, Han-Ill Y (2010) Solid State Ionics 181:724–729

    Article  Google Scholar 

  15. Shokri B, Firouzjah MA, Hosseini SI (2009). http://www.ispc-conference.org/ispcproc/papers/791.pdf

  16. Waseem M, Mustafa S, Naeem A, Shah KH, Irfan S, Ihsan-ul-Haque (2009) J Pak Mater Soc 3(1):19–21

    Google Scholar 

  17. Xu Y-M, Q J(A), He D-M, Wang D-M, Chen H-Y, Guan J, Zhang Q-M (2010) Oil Shale 27(1):37–46. Estonian Academy Publishers

  18. Haslinawati MM, Matori KA, Wahab ZA, Sidek HAA, Zainal AT (2009) Int J Basic Appl Sci IJBAS 9(9):111–117

    Google Scholar 

  19. Farook A, Thiam-Seng C, Jeyashelly A (2011) J Sol–Gel Sci Tech 59(3):580–583

    Article  Google Scholar 

  20. Kalapathy U, Proctor A, Shultz J (2000) J Chem Technol Biotechnol 75(6):464–468

    Article  CAS  Google Scholar 

  21. Chien-Te H, Fang-Lin W, Shu-Ying Y (2008) Surf Coat Technol 202(24):6103–6108

    Article  Google Scholar 

  22. Suriani I, Rafie JM (2012) Int J Electrochem Sci 7:2596–2615

    Google Scholar 

  23. Ali AMMA, Subban RHY, Bahron H, Winnie T, Latif F, Yahya MZA (2008) Ionics 14:491–496

    Article  CAS  Google Scholar 

  24. Pitawala HMJC, Dissanayake MAKL, Seneviratne VA (2007) Solid State Ionics 178:885–888

    Article  CAS  Google Scholar 

  25. Wieczorek W, Lipka P, Zukowska G, Wycislik H (1998) J Phys Chem B 102:6968–6974

    Article  CAS  Google Scholar 

  26. Han Y, Sukhishvili S, Du H, Cefaloni J, Smolinski B (2008) Layer-by-layer self-assembly of oppositely charged Ag nanoparticles on silica spheres as surface-enhanced Raman scattering platform. J Nanosci Nanotechnol 8:1–10

    Article  Google Scholar 

  27. Chao-Hua X, Shun-Tian J, Jing Z, Li-Qiang T, Hong-Zheng C, Mang W (2008) Sci Technol Adv Mater 9(3):035008

    Article  Google Scholar 

  28. Changhong S, Jun L, Hongbin G, Qingjun W, Qingmin C (2006) Appl Surf Sci 253(5):2633–2636

    Article  Google Scholar 

  29. Kwang-Sun J, Hee-Soo M, Jong-Wook K, Jong-Wan P (2003) J Power Sources 117:124–130

    Article  Google Scholar 

  30. Liu Y, Lee JY, Hong L (2002) J Power Sources 109:507–514

    Article  CAS  Google Scholar 

  31. Piawala HMJC, Dissanayake MAKL, Seneviratne VA (2007) Solid State Ionics 178:885–888

    Article  Google Scholar 

Download references

Acknowledgments

University of Peradeniya, Sri Lanka, and the International Programmes in Physical Sciences (IPPS), Uppsala University, Sweden, are gratefully acknowledged for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. K. L. Dissanayake.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dissanayake, M.A.K.L., Rupasinghe, W.N.S., Jayasundara, J.M.N.I. et al. Ionic conductivity enhancement in the solid polymer electrolyte PEO9LiTf by nanosilica filler from rice husk ash. J Solid State Electrochem 17, 1775–1783 (2013). https://doi.org/10.1007/s10008-012-1737-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1737-0

Keywords

Navigation