Skip to main content
Log in

Titanium phosphates as positive electrode in lithium-ion batteries: composition, phase purity and electrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Titanium phosphate materials were synthesized by evaporation-induced self assembly method by using Ti(OC4H9)4 and PCl3, in the presence of Pluronic (P123) as a non-ionic surfactant template. The molar ratios of P/Ti and the heat treatment of the materials affected their structures, particle geometries and electrochemical performances as indicated by X-ray powder diffraction, thermal gravimetric analysis, scanning electron and transmission electron microscopy and other electrochemical techniques. As expected, increasing the temperature to 800 °C for 3 h resulted in losing the mesoporosity and generally led to a decrease in capacity of these materials. Cyclic voltammetry showed that TiP2O7 is formed at 500 °C for 10 h at a molar ratio P/Ti = 0.412 as amorphous phase. On the other hand, at molar ratio P/Ti = 2.06 showed sharp peaks indicated TiP2O7 transformed into crystalline material showed lower peak separation potential indicated that kinetic reactions might be favored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  2. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  3. Yu JC, Zhang L, Zheng Z, Zhao J (2003) Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity. Chem Mater 15:2280–2286

    Article  CAS  Google Scholar 

  4. Zhao J, Tian B, Yue Y, Hua W, Zhao D, Gao Z (2005) New catalysts for dichlorodifluoromethane hydrolysis: Mesostructured titanium and aluminum phosphates. J Mol Cat A: Chem 242:218–223

    Article  CAS  Google Scholar 

  5. Gianotti E, Oliveira EC, Coluccia S, Pastore HO, Marchese L (2003) Synthesis and surface properties of Ti-containing mesoporous aluminophosphates. A comparison with Ti-grafted mesoporous silica Ti-MCM-41. Inorg Chim Acta 349:259–264

    Article  CAS  Google Scholar 

  6. Yantasee W, Deibler LA, Fryxell GE, Timchalk C, Lin Y (2005) Screen-printed electrodes modified with functionalized mesoporous silica for voltammetric analysis of toxic metal ions. Electrochem Commun 7:1170–1176

    Article  CAS  Google Scholar 

  7. Attia A, Zukalova M, Pospisil L, Kavan L (2007) Electrochemical impedance spectroscopy of mesoporous Al-stabilized TiO2 (anatase) in aprotic medium. J Solid State Electrochem 11:1163–1169

    Article  CAS  Google Scholar 

  8. Attia A, Zukalova M, Rathousky J, Zukal A, Kavan L (2005) Mesoporous electrode material from alumina-stabilized anatase TiO2 for lithium ion batteries. J Solid State Electrochem 9:138–145

    Article  CAS  Google Scholar 

  9. Kavan L, Attia A, Lenzmann F, Elder SH, Grätzel M (2000) Lithium insertion into zirconia-stabilized mesoscopic TiO2 (anatase). J Electrochem Soc 147:2897–2902

    Article  CAS  Google Scholar 

  10. Shi Z, Wang Q, Ye W, Li Y, Yang Y (2006) Synthesis and characterization of mesoporous titanium pyrophosphate as lithium intercalation electrode materials. Micropor Mesopor Mat 88:232–237

    Article  CAS  Google Scholar 

  11. Kapoor MP, Inagaki S, Yoshida H (2005) Novel zirconium-Titanium Phosphates Mesoporous Materials for Hydrogen Production by Photoinduces Water Splitting. J Phys Chem B 109:9231–9238

    Article  CAS  Google Scholar 

  12. Sreethawong T, Puangpetch T, Chavadej S, Yoshikawa S (2007) Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. J Power Sources 165:861–869

    Article  CAS  Google Scholar 

  13. Jia X, He W, Luo S, Feng Y, Xu G, Li H, Zhang X (2006) Mesoporous anatase with multi-morphologies synthesized by sol-gel method. Mater Lett 60:1839–1842

    Article  CAS  Google Scholar 

  14. Hu X, Skadtchenko BO, Trudeau M, Antonelli DM (2006) Hydrogen storage in chemically reducible mesoporous and microporous Ti oxides. J Amer Chem Soc 128:11740–11741

    Article  CAS  Google Scholar 

  15. Deepa M, Srivastava AK, Sood KN, Agnihotry SA (2006) Nanostructured mesoporous tungsten oxide films with fast kinetics for electrochromic smart windows. Nanotechnology 17:2625–2630

    Article  CAS  Google Scholar 

  16. Jheong HK, Kim YJ, Pan JH, Won TY, Lee WI (2006) Electrochromic property of the viologen-anchored mesoporous TiO2 films. J Electroceram 17:929–932

    Article  CAS  Google Scholar 

  17. Oregan B, Grätzel M (1991) A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 353:737–740

    Article  CAS  Google Scholar 

  18. Grätzel M (2005) Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem Lett 34:8–13

    Article  Google Scholar 

  19. Hagfeldt A, Grätzel M (2000) Molecular photovoltaics. Accounts Chem Res 33:245–250

    Article  Google Scholar 

  20. Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB (1997) Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation. J Electrochem Soc 144:2581–2586

    Article  CAS  Google Scholar 

  21. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates. J Electrochem Soc 144:1609–1613

    Article  CAS  Google Scholar 

  22. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  23. Ellis B, Kan WH, Makahnouk WRM, Nazar LF (2007) Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4 7. J Mater Chem 17:3248–3254

    Article  CAS  Google Scholar 

  24. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates 1. Nat Mater 3:147–152

    Article  CAS  Google Scholar 

  25. Ramana CV, it-Salah A, Utsunomiya S, Becker U, Mauger A, Gendron F, Julien CM (2006) Structural characteristics of lithium nickel phosphate studied using analytical electron microscopy and Raman spectroscopy 8. Chem Mater 18:3788–3794

    Article  CAS  Google Scholar 

  26. Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G (2002) Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries 2. Electrochem Solid State Lett 5:A149–A151

    Article  CAS  Google Scholar 

  27. Antonelli DM (1999) Synthesis of phosphorus-free mesoporous titania via templating with amine surfactants. Micropor Mesopor Mat 30:315–319

    Article  CAS  Google Scholar 

  28. Santos-Pena J, Soudan P, Cruz-Yusta M, Franger S (2006) Increasing the electrochemical activity of transition metal phosphates in lithium cells by treatment with intimate carbon: The case of titanium phosphate. Electrochim Acta 51:4841–4849

    Article  CAS  Google Scholar 

  29. Yang JS, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route. J Electrochem Soc 153:A716–A723

    Article  CAS  Google Scholar 

  30. Alberti G, Casciola M, Cavalaglio S, Vivani R (1999) Proton conductivity of mesoporous zirconium phosphate pyrophosphate. Solid State Ionics 125:91–97

    Article  CAS  Google Scholar 

  31. Rodriguez-Castellon E, Jimenez-Jimenez J, Jimenez-lopez A, Maireles-Torres P, Ramos-Barrado JR, Jones DJ, Roziere J (1999) Proton Conductivity of Mesoporous MCM type of Zirconium and Titanium Phosphates. Solid State Ionics 125:407–410

    Article  CAS  Google Scholar 

  32. Bhaumik A, Inagaki S (2001) Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J Am Chem Soc 123:691–696

    Article  CAS  Google Scholar 

  33. Serre C, Taulelle F, Ferey G (2002) Synthesis and Characterization of New Lamellar Templated Titanium(IV) Phosphates with Perforated Layers: MIL-28n or Ti3O2X2(HPO4)x(PO4)y.(N2CnH2n+6)z.(H2O)2 (n = 2, 3; x = 0, 2; y = 4, 2; z = 3, 2; X = F, OH). Chem Mater 14:998–1003

    Article  CAS  Google Scholar 

  34. Pan C-L, Zhang W-X, Wang Y-L, Zhou Z, Jiang D-Z, Wu S-J, Wu T-H (2003) Synthesis of Mesoporous Titanium Phosphate with High Surface Area Using Long-Chain Alkylamine. Mater Lett 57:3815–3819

    Article  CAS  Google Scholar 

  35. Thieme M, Schueth F (1999) Preprartion of a Mesoporous High Surface Area Titanium Oxo Phosphate via a Non-Ionic Surfactant Route. Micropor Mesopor Mat 27:193–200

    Article  CAS  Google Scholar 

  36. Kovalchuk TV, Sfihi H, Korchev AS, Kovalenko AS, Il’in VG, Zaitsev VN, Fraissard J (2005) Synthesis, Structure, and Acidic Properties of MCM-41 Functionalized with Phosphate and Titanium Phosphate Groups. J Phys Chem B 109:13948–13956

    Article  CAS  Google Scholar 

  37. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  38. Jones P, Hockey JA (1971) Infra-Red Studies of Rutile Surfaces .2. Hydroxylation, Hydration and Structure of Rutile Surfaces. Trans Faraday Soc 67:2679–2685

    Article  CAS  Google Scholar 

  39. Tarafdar A, Panda AB, Pradhan NC, Pramanik P (2006) Synthesis of spherical mesostructured zirconium phosphate with acidic properties. Micropor Mesopor Mat 95:360–365

    Article  CAS  Google Scholar 

  40. Santos-Pena J, Cruz-Yusta M, Soudan P, Franger S, Cuart-Pascual JJ (2006) Carbon and transition metal containing titanium phosphates as electrodes for lithium ion batteries. Solid State Ionics 177:2667–2674

    Article  CAS  Google Scholar 

  41. Pan C-L, Yuan S, Zhang W-X (2006) A neutral templating route to mesoporus titanium phosphate molecular sieves with enhanced thermal stability. Appl Cat A 312:186–193

    Article  CAS  Google Scholar 

  42. Patnaik P (2004) Dean’s analytical chemistry handbook. McGraw Hill, New York

    Google Scholar 

  43. Fei H, Zhou X, Zhou Z, Shen Z, Sun P, Yuan Z, Chen T (2007) Facile template-free synthesis of meso-macroporous titanium phosphate with hierarchical pore structure. Micropor Mesopor Mat 100:139–145

    Article  CAS  Google Scholar 

  44. Qiao H, Xiao L, Zhang L (2008) Phosphatization: A promising approach to enhance the performance of mesoporous TiO2 anode for lithium ion batteries. Electrochem Commun 10:616–620

    Article  CAS  Google Scholar 

  45. Gribb AA, Banfield JF (1997) Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Amer Mineral 82:717–728

    CAS  Google Scholar 

  46. Zhang HZ, Banfield JF (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8:2073–2076

    Article  CAS  Google Scholar 

  47. Criado J, Real C (1983) Mechanism of the Inhibiting Effect of Phosphate on the Anatase-Rutil Transformation Inducted by Thermal and Mechanical Treatment of TiO2. J Chem Soc, Faraday Trans 1(79):2765–2771

    Google Scholar 

  48. Grzmil B, Rabe M, Kic B, Lubkowski K (2007) Influence of Phosphate, Potassium, Lithium, and Aluminium on the Anatase-Rutile Phase Transformation. Ind Eng Chem Res 46:1018–1024

    Article  CAS  Google Scholar 

  49. Grzmil B, Kic B, Rabe M (2004) Inhibition of the anatase - Rutile phase transformation with addition of K2O, P2O5, and Li2O. Chem Pap-Chem Zvesti 58:410–414

    CAS  Google Scholar 

  50. Gesenhues U (2001) Calcination of Metatitanic acid to titanium dioxide white pigments. Chem Eng Technol 24:685–694

    Article  CAS  Google Scholar 

  51. Wilhelm O, Pratsinis SE, de Chambrier E, Crouzet M, Exnar I (2004) Electrochemical performance of granulated titania nanoparticles. J Power Sources 134:197–201

    Article  CAS  Google Scholar 

  52. Wang X, Yang X, Zheng H, Jin J, Zhang Z (2005) Synthesis and electrochemical performance of amorphous hydrated iron phosphate nanoparticles. J Cryst Growth 274:214–217

    Article  CAS  Google Scholar 

  53. Fang HT, Liu M, Wang DW, Sun T, Guan DS, Li F, Zhou JG, Sham TK, Cheng HM (2009) Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology 20(22):225701

    Google Scholar 

  54. Furukawa H, Hibino M, Honma I (2004) Electrochemical properties of nanostructured amorphous, sol-gel-synthesized TiO2/acetylene black composite electrodes. J Electrochem Soc 151:A527–A531

    Article  CAS  Google Scholar 

  55. Huang X, Yue H, Attia A, Yang Y (2007) Preparation and Properties of Manganese Oxide/Carbon Composites by Reduction of Potassium Permanganate with Acetylene Black. J Electrochem Soc 154:A26–A33

    Article  CAS  Google Scholar 

  56. Patoux S, Masquelier C (2002) Lithium Insertion into Titanium Phosphates, Silicates, and Sulfates. Chem Mater 14:5068

    Google Scholar 

  57. Kijima N, Takahashi Y, Hayakawa H, Awaka J, Akimoto J (2008) Synthesis, characterization, and electrochemical properties of a thin flake titania fabricated from exfoliated nanosheets. J Phys Chem Solids 69:1447–1449

    Article  CAS  Google Scholar 

  58. Zhou YK, Cao L, Zhang FB, He BL, Li HL (2003) Lithium insertion into TiO2 nanotube prepared by the hydrothermal process. J Electrochem Soc 150:A1246–A1249

    Article  CAS  Google Scholar 

  59. Huang SY, Kavan L, Exnar I, Grätzel M (1995) Rocking Chair Lithium Battery Based on Nanocrystalline TiO2 (Anatase). J Electrochem Soc 142:L142–L144

    Article  CAS  Google Scholar 

  60. Xu JW, Ha CH, Cao B, Zhang WF (2007) Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries 12. Electrochim Acta 52:8044–8047

    Article  CAS  Google Scholar 

  61. Zotti G, Schiavon G, Zecchin S (1999) Anodic dissolution of titanium in acetonitrile to Ti(IV) perchlorate and subsequent reductive electrodeposition of amorphous TiO2 films. J Electrochem Soc 146:637–641

    Article  CAS  Google Scholar 

  62. Kavan L, Rathousky J, Grätzel M, Shklover V, Zukal A (2000) Surfactant-templated TiO2 (Anatase): Characteristic Features of lithium Insertion Electrochemistry in Organized Nanostructures. J Phys Chem B 104:12012–12020

    Article  CAS  Google Scholar 

  63. Uebou Y, Okada S, Egashira M, Yamaki J-I (2002) Cathode properties of pyrophosphates for rechargeable lithium batteries. Solid State Ionics 148:323–328

    Article  CAS  Google Scholar 

  64. Kishore MS, Pralong V, Caignaret V, Varadaraju UV, Raveau B (2007) Electrochemical intercalation of lithium in the titanium hydrogeno phosphate Ti(HPO4)2•H2O. J Power Sources 169:355–360

    Article  CAS  Google Scholar 

  65. Kavan L, Grätzel M, Rathousky J, Zukal A (1996) Nanocrystalline TiO2 (anatase) electrodes: Surface morphology, adsorption, and electrochemical properties. J Electrochem Soc 143:394–400

    Article  CAS  Google Scholar 

  66. Lindstrom H, Sodergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist SE (1997) Li+ ion insertion in TiO2 (anatase) .1. Chronoamperometry on CVD films and nanoporous films. J Phys Chem B 101:7710–7716

    Article  Google Scholar 

  67. van de Krol R, Goossens A, Schoonman J (1999) Spatial extent of lithium intercalation in anatase TiO2. J Phys Chem B 103:7151–7159

    Article  Google Scholar 

  68. Subramanian V, Karki A, Gnanasekar KI, Eddy FP, Rambabu B (2006) Nanocrystalline TiO2 (anatase) for Li-ion batteries. J Power Sources 159:186–192

    Article  CAS  Google Scholar 

  69. Scherrer P (1918) Estimation of the size and internal structure of colloidal particles by means of röntgen Rays. Nachr Ges Wiss Göttingen 2:96–100

    Google Scholar 

  70. Milne NA, Skyllas-Kazacos M, Luca V (2009) Crystallite Size Dependence of Lithium Intercalation in Nanocrystalline Rutile. J Phys Chem C 113:12983–12995

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. Attia thanks Xiamen University for the financial support during the course of this work. This work was financially supported by the National Natural Science Foundation of China (grant no. 20873115 and no. 90606015) and the National Basic Research Program of China (973 program, grant no. 2007CB209702).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adel Attia or Yong Yang.

Additional information

Adel Attia is on leave from the National Research Centre, El-Buhooth St., Dokki 12311, Cairo, Egypt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attia, A., Wang, Q., Huang, X. et al. Titanium phosphates as positive electrode in lithium-ion batteries: composition, phase purity and electrochemical performance. J Solid State Electrochem 16, 1461–1471 (2012). https://doi.org/10.1007/s10008-011-1543-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1543-0

Keywords

Navigation