Skip to main content
Log in

π-dimerization of pleiadiene radical cations at low temperatures revealed by UV–vis spectroelectrochemistry and quantum theory

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

One-electron oxidation of the non-alternant polycyclic aromatic hydrocarbon pleiadiene and related cyclohepta[c,d]pyrene and cyclohepta[c,d]fluoranthene in THF produces corresponding radical cations detectable in the temperature range of 293–263 K only on the subsecond time scale of cyclic voltammetry. Although the EPR-active red-coloured pleiadiene radical cation is stable according to the literature in concentrated sulfuric acid, spectroelectrochemical measurements reported in this study provide convincing evidence for its facile conversion into the green-coloured, formally closed shell and, hence, EPR-silent π-bound dimer dication stable in THF at 253 K. The unexpected formation of the thermally unstable dimeric product featuring a characteristic intense low-energy absorption band at 673 nm (1.84 eV; logε max = 4.0) is substantiated by ab initio calculations on the parent pleiadiene molecule and the PF 6 salts of the corresponding radical cation and dimer dication. The latter is stabilized with respect to the radical cation by 14.40 kcal mol−1 (DFT B3LYP) [37.64 kcal mol−1 (CASPT2/DFT B3LYP)]. An excellent match has been obtained between the experimental and TD-DFT-calculated UV–vis spectra of the PF 6 salt of the pleiadiene dimer dication, considering solvent (THF) effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Streitwieser A (1961) Molecular orbital theory for organic chemists. Wiley, New York

    Google Scholar 

  2. Jenneskens LW, Sarobe M, Zwikker JW (1996) Pure Appl Chem 96:291–300

    Google Scholar 

  3. Scott LT (1996) Pure Appl Chem 96:291–300

    Article  Google Scholar 

  4. Koper C PhD (2003) Non-alternant polycyclic aromatic hydrocarbons versus closed carbon surfaces. Thesis, Utrecht University, Utrecht

  5. Michl J (1976) J Am Chem Soc 98:4546–4549

    Article  CAS  Google Scholar 

  6. Koper C, Sarobe M, Jenneskens LW (2004) Phys Chem Chem Phys 6:319–327

    Article  CAS  Google Scholar 

  7. Zahradník R, Rejholec P, Hobza P, Čárský P, Hafner K (1972) Coll Czech Chem Commun 37:1983–1989

    Google Scholar 

  8. Shida T, Iwate S (1973) J Am Chem Soc 95:3473–3483

    Article  CAS  Google Scholar 

  9. Ikegami Y, Iwaizumi M, Murata I (1974) Chem Lett 1141–1144

  10. Lide DR (1994) CRC handbook of chemistry and physics, 75th edn. CRC, Boca Raton

    Google Scholar 

  11. Pysh ES, Yang NC (1963) J Am Chem Soc 85:2124–2130

    Article  CAS  Google Scholar 

  12. Conelly NG, Geiger WE (1996) Chem Rev 96:877–910

    Article  Google Scholar 

  13. Khodorkovsky V, Shapiro L, Krief P, Shames A, Mabon G, Gorgues A, Giffard M (2001) Chem Commun 2736–2737

  14. Kolc J, Michl J (1976) J Am Chem Soc 98:4540–4545

    Article  CAS  Google Scholar 

  15. Hirata S, Head-Gordon M, Szczepanski J, Vala M (2003) J Phys Chem A 107:4940–4951

    Article  CAS  Google Scholar 

  16. Andersson K, Malmqvist P-Å, Roos BOJ (1992) Chem Phys 96:1218

    CAS  Google Scholar 

  17. Andersson K, Malmqvist P-Å, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483–5488

    Article  CAS  Google Scholar 

  18. SCM (2006) Amsterdam density functional theory, 1st edn. URL http://www.scm.com: Amsterdam

  19. de Vries AH, van Duijnen PTh, Juffer AH, Rullmann JAC, Dijkman JP, Merenga H, Thole BT (1995) J Comput Chem 16:37–55

    Article  Google Scholar 

  20. van Duijnen PTh, Swart M, Jensen L (2008) The discrete reaction field approach for calculating solvent effects. In: Canuto S (ed) Solvation effects on molecules and biomolecules: computational methods and applications, vol. 6. Springer, Berlin, p 39

    Google Scholar 

  21. Swart M, van Duijnen PTh (2006) Mol Simul 32:471–484

    Article  CAS  Google Scholar 

  22. van Gisbergen SJA, Snijders JG, Baerends EJ (1999) Comp Phys Commun 118:119–138

    Article  Google Scholar 

  23. Otero-Lobato M-J, Jenneskens LW, Seinen W (2004) Mut Res 559:105–119

    CAS  Google Scholar 

  24. Otero-Lobato M-J, Kaats-Richter VEM, Koper C, Vlietstra EJ, Havenith RWA, Jenneskens LW, Seinen W (2005) Mut Res 582:115–132

    Google Scholar 

  25. Mahabiersing T, Luyten H, Nieuwendam RC, Hartl F (2003) Collect Czech Chem Commun 68:1687–1709

    Article  CAS  Google Scholar 

  26. Hartl F, Luyten H, Nieuwenhuis HA, Schoemaker GC (1994) Appl Spectroscopy 48:1522–1528

    Article  Google Scholar 

  27. Krejčík M, Daněk M, Hartl F (1991) J Electroanal Chem Interfacial Electrochem 317:179–187

    Article  Google Scholar 

  28. Hartl F, Groenestein RP, Mahabiersing T (2001) Collect Czech Chem Commun 66:52–66

    Article  CAS  Google Scholar 

  29. Becke AD (1994) J Chem Phys 98:5648–5652

    Article  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  31. Guest MF, Bush IJ, van Dam HJJ, Sherwood P, Thomas JMH, van Lenthe JH, Havenith RWA, Kendrick J (2005) Mol Phys 103:719–747

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian, Pittsburg

  33. Dunning TH (1971) J Chem Phys 33:716–723

    Article  Google Scholar 

  34. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  35. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  36. Gordon MS, Schmidt MW (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry, the first forty years. Elsevier, Amsterdam, pp 1167–1189

    Chapter  Google Scholar 

  37. Tawada Y, Tsuneda T, Yanagisawa S, Yanai Y, Hirao K (2004) J Chem Phys 120:8425–8433

    Article  CAS  Google Scholar 

  38. Dunning TH, Hay PJ (1977) In: Methods of electronic structure theory, vol. 2. Schaefer III HF (ed) Plenum

  39. Magnusson E, Schaefer HF III (1985) J Chem Phys 83:5721–5726

    Article  CAS  Google Scholar 

  40. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist P-Å, Neogrády P, Bondo PT, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224–247

    Article  CAS  Google Scholar 

  41. Swart M, van Duijnen PTh, Snijders JG (2001) J Comp Chem 22:79–88

    Article  CAS  Google Scholar 

  42. Swart M, van Duijnen PTh (2006) Mol Simul 32:471–484

    Article  CAS  Google Scholar 

  43. Toxvaerd T (1972) Mol Phys 72:159–168

    Article  Google Scholar 

  44. Coutinho K, Oliveira MJD, Canuto S (1998) Int J Quantum Chem 66:249–253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.W.A.H. acknowledges Prof. Dr. R. Broer (University of Groningen, The Netherlands) for fruitful discussions and the Netherlands Organisation for Scientific Research (NWO) for financial support (the ECHO-grant 700.57.027). Mr. C. Mahabiersing (University of Amsterdam, The Netherlands) is thanked for his assistance with the spectroelectrochemical experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonardus W. Jenneskens, Remco W. A. Havenith or František Hartl.

Additional information

This article is dedicated to Prof. Fritz Pragst on the occasion of his 70th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information

(DOC 5.70 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van het Goor, L., van Duijnen, P.T., Koper, C. et al. π-dimerization of pleiadiene radical cations at low temperatures revealed by UV–vis spectroelectrochemistry and quantum theory. J Solid State Electrochem 15, 2107–2117 (2011). https://doi.org/10.1007/s10008-011-1532-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1532-3

Keywords

Navigation