Skip to main content
Log in

Oxygen excess nonstoichiometry and thermodynamic quantities of La2NiO4 + δ

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The oxygen excess nonstoichiometry of La2NiO4 + δ is measured as a function of temperature and oxygen partial pressure (pO2) by coulometric titration method. A positive deviation from the ideal dilution solution behavior is exhibited, and the partial molar thermodynamic quantities of La2NiO4 + δ are calculated from the Gibbs–Helmholtz equation for regular solution by introducing the activity coefficient of the charge carriers. The activity coefficient of holes is successfully calculated by using the Joyce–Dixon approximation of the Fermi–Dirac integral. The effective mass of holes (\( m_{\text{h}}^{{*}} \)) is 1.27–1.29 times the rest mass (m h), which indicate the action of band-like conduction and allow the effect of the small degree of polaron hopping to be ignored. The activity coefficient of holes calculated against the oxygen nonstoichiometry clearly illustrates the early positive deviation of the activity coefficient of holes from unit, leading to \( \gamma_{{{\text{h}}^{ \bullet }}} \) ≈ 14 at δ ≈ 0.08, which is quite close to the literature value of \( \gamma_{{{\text{h}}^{ \bullet }}} \) ≈ 10 at δ ≈ 0.08. All the evaluated thermodynamic quantities are in good agreement with the experimental literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mauvy F, Lalanne C, Bassat JM, Grenier JC, Zhao H, Dordor P, Stevens Ph (2005) J Eur Ceram Soc 25:2669–2672

    Article  CAS  Google Scholar 

  2. Smith JB, Norby T (2006) J Electrochem Soc 153:A233–A238

    Article  CAS  Google Scholar 

  3. Ishihara T, Miyoshi S, Furuno T, Sanguanruang O, Matsumoto H (2006) Solid State Ionics 177:3087–3091

    Article  CAS  Google Scholar 

  4. Kharton VV, Kovalevsky AV, Avdeev M, Tsipis EV, Patrakeev MV, Yaremchenko AA, Naumovich EN, Frade JR (2007) Chem Mater 19:2027–2033

    Article  CAS  Google Scholar 

  5. Naumovich EN, Patrakeev MV, Kharton VV, Yaremchenko AA, Logvinovich DI, Marques FMB (1999) Solid State Ionics 119:23–30

    Article  Google Scholar 

  6. Patrakeev MV, Naumovich EN, Kharton VV, Yaremchenko AA, Tsipis EV, Núñez P, Frade JR (2005) Solid State Ionics 176:179–188

    Article  CAS  Google Scholar 

  7. Kilner JA, Shaw CKM (2002) Solid State Ionics 154–155:523–527

    Article  Google Scholar 

  8. Jorgensen JD, Dabrowski B, Pei S, Richards DR, Hinks DG (1989) Phys Rev B 40:2187–2199

    Article  CAS  Google Scholar 

  9. Bassat JM, Odier P, Villesuzanne A, Marin C, Pouchard M (2004) Solid State Ionics 167:341–347

    Article  CAS  Google Scholar 

  10. Naumovich EN, Kharton VV (2010) J Mol Struct Theochem 946:57–64

    Article  CAS  Google Scholar 

  11. Chroneos A, Parfitt D, Kilner JA, Grimes RW (2010) J Mater Chem 20:266–270

    Article  CAS  Google Scholar 

  12. Parfitt D, Chroneos A, Kilner JA, Grimes RW (2010) Phys Chem Chem Phys 12:6834–6836

    Article  CAS  Google Scholar 

  13. Nakamura T, Yashiro K, Sato K, Mizusaki J (2009) Solid State Ionics 180:368–376

    Article  CAS  Google Scholar 

  14. Tsipis EV, Naumovich EN, Patrakeev MV, Waerenborgh JC, Pivak YV, Gaczynski P, Kharton VV (2007) J Phys Chem Solids 68:1443–1455

    Article  CAS  Google Scholar 

  15. Kim H-S, Yoo H-I (2010) Phys Chem Chem Phys 12:4704–4713

    Article  CAS  Google Scholar 

  16. Nakamura T, Yashiro K, Sato K, Mizusaki J (2009) Phys Chem Chem Phys 11:3055–3062

    Article  CAS  Google Scholar 

  17. Nakamura T, Yashiro K, Sato K, Mizusaki J (2009) J Solid State Chem 182:1121–1128

    Article  CAS  Google Scholar 

  18. Boehm E, Bassat JM, Dordor P, Mauvy F, Grenier JC, Stevens Ph (2005) Solid State Ionics 176:2717–2725

    Article  CAS  Google Scholar 

  19. Millburn JE, Green MA, Neumann DA, Rosseinsky MJ (1999) J Solid State Chem 145:401–420

    Article  CAS  Google Scholar 

  20. Kang S-H, Yoo H-I (1996) Solid State Ionics 86–88:751–755

    Article  Google Scholar 

  21. Lee D-K, Jeon J-I, Kim M-H, Choi W, Yoo H-I (2005) J Solid State Chem 178:185–193

    Article  CAS  Google Scholar 

  22. Naumovich EN, Patrakeev MV, Kharton VV, Yaremchenko AA, Longvinovich DI, Marques FMB (2005) Solid State Sci 7:1353–1362

    Article  CAS  Google Scholar 

  23. Wagner C (1953) J Chem Phys 21:1819–1827

    Article  CAS  Google Scholar 

  24. Kröger FA (1974) The chemistry of imperfect crystals, vol 2, 2 revisedth edn. North Holland, The Netherlands, Chap 7 and 9

    Google Scholar 

  25. Lankhorst MHR, Bouwmeester HJM, Verweji H (1997) J Solid State Chem 133:555–567

    Article  CAS  Google Scholar 

  26. Hook JR, Hall HE (1991) Solid state physics, 2nd edn. Wiley, England, pp 399–415

    Google Scholar 

  27. Mizusaki J, Yamauchi S, Fueki K, Ishikawa A (1984) Solid State Ionics 12:119–124

    Article  CAS  Google Scholar 

  28. Joyce WB, Dixon RW (1997) Appl Phys Lett 31(5):354–356

    Article  Google Scholar 

  29. Kittel C, Kroemer H (1980) Thermal physics, 2nd edn. Freeman and Company, New York, Chap 133

    Google Scholar 

  30. Rosenberg AJ (1960) J Chem Phys 33(3):665–667

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2009-0090172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Ju Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, SY., Choi, MB., Hwang, JH. et al. Oxygen excess nonstoichiometry and thermodynamic quantities of La2NiO4 + δ . J Solid State Electrochem 16, 785–793 (2012). https://doi.org/10.1007/s10008-011-1427-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1427-3

Keywords

Navigation