Skip to main content
Log in

Crystal Structure and Oxygen Nonstoichiometry of Ba0.9Ln0.1Fe1 – yCoyO3 – δ (Ln = Nd, Sm, Eu) Solid Solutions

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Samples of general formula Ba0.9Ln0.1Fe1 – yCoyO3 – δ (Ln = Nd, Sm, Eu; y = 0.1–0.9) were studied at 1100°С under air. X-ray powder diffraction data for samples prepared by glycerol–nitrate technology were used to determine the homogeneity range of Ba0.9Ln0.1Fe1 – yCoyO3 – δ solid solutions (ss): 0.1 ≤ y ≤ 0.7 for Ln = Nd, 0.1 ≤ y ≤ 0.5 for Ln = Sm, and 0.1 ≤ y ≤ 0.4 for Ln = Eu. The crystal structure of single-phase oxides was described in terms of a cubic unit cell (space group \(Pm\bar {3}m\)). The increasing cobalt content or rare-earth atomic radius brings about an increase in Ba0.9Ln0.1Fe1 – yCoyO3 – δ unit cell parameter. The oxygen content (3 – δ) in the temperature range 25–1100°C under air was determined by thermogravimetry and iodometric titration. Oxygen exchange between the solid oxide and gas phase starts at ~350°С. The oxygen content and mean oxidation state of the 3d metal in Ba0.9Ln0.1Fe1 – yCoyO3 – δ both decrease as the cobalt concentration increases or the lanthanide atomic number increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. D. Penwell and J. B. Giorgi, Sens. Actuators, B: Chem. 191, 171 (2014). https://doi.org/10.1016/j.snb.2013.09.095

    Article  CAS  Google Scholar 

  2. D. Rembelski, J. P. Viricelle, L. Combemale, et al., Fuel Cells 12, 256 (2012). https://doi.org/10.1002/fuce.201100064

    Article  CAS  Google Scholar 

  3. F. Dong, D. Chen, Y. Chen, et al., J. Mater. Chem. 22, 15071 (2012). https://doi.org/10.1039/C2JM31711G

    Article  CAS  Google Scholar 

  4. V. V. Kharton, A. A. Yaremchenko, A. V. Kovalevsky, et al., J. Membr. Sci. 163, 307 (1999). https://doi.org/10.1016/S0376-7388(99)00172-6

    Article  CAS  Google Scholar 

  5. E. V. Tsipis and V. V. Kharton, J. Solid State Electrochem. 12, 1367 (2008). https://doi.org/10.1007/s10008-008-0611-6

    Article  CAS  Google Scholar 

  6. Z. Wei, J. Wang, X. Yu, et al., Int. J. Hydrogen Energy 46, 23868 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.188

    Article  CAS  Google Scholar 

  7. Y. Lin, R. Ran, Y. Zheng, et al., J. Power Sources 180, 15 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.044

    Article  CAS  Google Scholar 

  8. X. Ding, X. Gao, W. Zhu, et al., Int. J. Hydrogen Energy 39, 12092 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.009

    Article  CAS  Google Scholar 

  9. Y.-D. Kim, J.-Y. Yang, M. Saqib, et al., Ceram. Int. 47, 7985 (2021). https://doi.org/10.1016/j.ceramint.2020.11.149

    Article  CAS  Google Scholar 

  10. D. Chen, C. Chen, F. Dong, et al., J. Power Sources 250, 188 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.010

    Article  CAS  Google Scholar 

  11. J. L. Delattre, A. M. Stacy, and T. Siegrist, J. Solid State Chem. 177, 928 (2004). https://doi.org/10.1016/j.jssc.2003.09.032

    Article  CAS  Google Scholar 

  12. K. Mori, T. Kamiyama, H. Kobayashi, et al., Phys. B: Condens. Matter 329333, 807 (2003). https://doi.org/10.1016/S0921-4526(02)02571-1

    Article  CAS  Google Scholar 

  13. X. Zhu, H. Wang, and W. Yang, Solid State Ion 177, 2917 (2006). https://doi.org/10.1016/j.ssi.2006.08.027

    Article  CAS  Google Scholar 

  14. J. M. Gonzalez-Calbet, M. Parras, M. Vallet-Regi, et al., J. Solid State Chem. 86, 149 (1990). https://doi.org/10.1016/0022-4596(90)90129-L

    Article  CAS  Google Scholar 

  15. M. Parras, J. M. González-Cálbet, M. Vallet-Regi, et al., Solid State Ionics 6365, 714 (1993). https://doi.org/10.1016/0167-2738(93)90185-6

    Article  Google Scholar 

  16. Z. Yáng, A. S. Harvey, A. Infortuna, et al., J. Appl. Crystallogr. 42, 153 (2009). https://doi.org/10.1107/S0021889809002040

    Article  CAS  Google Scholar 

  17. K. Yang, Y. Wang, Z. Yang, et al., Int. J. Hydrogen Energy 45, 34080 (2020). https://doi.org/10.1016/j.ijhydene.2020.09.086

    Article  CAS  Google Scholar 

  18. T. Okiba, T. Sato, F. Fujishiro, et al., Solid State Ionics 320, 76 (2018). https://doi.org/10.1016/j.ssi.2018.02.036

    Article  CAS  Google Scholar 

  19. J. Wang, M. Saccoccio, D. Chen, et al., J. Power Sources 297, 511 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.016

    Article  CAS  Google Scholar 

  20. J. Wang, K. Y. Lam, M. Saccoccio, et al., J. Power Sources 324, 224 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.089

    Article  CAS  Google Scholar 

  21. N. E. Volkova, M. V. Bazueva, D. T. Aisarinova, et al., J. Alloys Compd. 860 (2020). https://doi.org/10.1016/j.jallcom.2020.158438

  22. T. Okiba, T. Sato, F. Fujishiro, et al., Solid State Ionics 320, 76 (2018).

    Article  CAS  Google Scholar 

  23. M. Parras, M. Vallet-Regi, J. M. Gonzales-Calbet, et al., J. Solid State Chem. 74, 110 (1988). https://doi.org/10.1016/0022-4596(88)90336-2

    Article  CAS  Google Scholar 

  24. N. E. Volkova, A. S. Urusova, L. Ya. Gavrilova, et al., Russ. J. Gen. Chem. 86, 1800 (2016). https://doi.org/10.1134/S1070363216080041

    Article  CAS  Google Scholar 

  25. N. E. Volkova, M. Yu. Mychinko, I. B. Golovachev, et al., J. Alloys Compd. 784, 1297 (2019). https://doi.org/10.1016/j.jallcom.2018.12.391

    Article  CAS  Google Scholar 

  26. N. E. Volkova, O. I. Lebedev, L. Ya. Gavrilova, et al., Chem. Mater. 26, 6303 (2014). https://doi.org/10.1021/cm503276p

    Article  CAS  Google Scholar 

  27. P. Karen, P. H. Andresen, and A. Kjekshus, J. Solid State Chem. 101, 48 (1992). https://doi.org/10.1016/0022-4596(92)90199-6

    Article  CAS  Google Scholar 

  28. X. Liu, H. Zhao, J. Yang, et al., J. Membr. Sci. 383, 235 (2011). https://doi.org/10.1016/j.memsci.2011.08.059

    Article  CAS  Google Scholar 

  29. R. D. Shannon, Acta Crystallogr. A32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  30. J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity (Prentice Hall, New York, 1997).

    Google Scholar 

  31. T. L. Cottrell, The Strengths of Chemical Bonds (Butterworth, London, 1958).

    Google Scholar 

  32. X. Li, X. Jiang, S. Pang, et al., Int. J. Hydrogen Energy 36, 13850 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.083

    Article  CAS  Google Scholar 

  33. I. B. Golovachev, M. Yu. Mychinko, N. E. Volkova, et al., J. Solid State Chem. 301, 122324 (2021). https://doi.org/10.1016/j.jssc.2021.122324

    Article  CAS  Google Scholar 

  34. A. K. Kundu, M. Yu. Mychinko, V. Caignaert, et al., J. Solid State Chem. 231, 36 (2015). https://doi.org/10.1016/j.jssc.2015.07.050

    Article  CAS  Google Scholar 

  35. A. Maignan, C. Martin, D. Pelloquin, et al., J. Solid State Chem. 142, 247 (1999). https://doi.org/10.1006/jssc.1998.7934

    Article  CAS  Google Scholar 

  36. T. V. Aksenova, L. Ya. Gavrilova, D. S. Tsvetkov, et al., Russ. J. Phys. Chem. A 85, 427 (2011). https://doi.org/10.1134/S0036024411030022

    Article  CAS  Google Scholar 

  37. J. Yoo, C. Y. Park, and A. J. Jacobson, Solid State Ionics 175, 55 (2004). https://doi.org/10.1016/j.ssi.2004.09.026

    Article  CAS  Google Scholar 

  38. J. Mizuzaki, M. Yoshihiro, Sh. Yamauchi, and K. Fueki, J. Solid State Chem. 58, 257 (1985). https://doi.org/10.1016/0022-4596(85)90243-9

    Article  Google Scholar 

  39. A. N. Petrov, V. A. Cherepanov, O. F. Kononchuk, and L. Ya. Gavrilova, J. Solid State Chem. 87, 69 (1990). https://doi.org/10.1016/0022-4596(90)90066-7

    Article  CAS  Google Scholar 

  40. L. Ya. Gavrilova and V. A. Cherepanov, Solid Oxide Fuel Cells (SOFC VI), Ed. by S. C. Singhal and M. Dokiya (Electrochemical Society, 1999).

    Google Scholar 

  41. A. Yu. Kropanev and A. N. Petrov, Neorgan. Mater. 19, 2027 (1983).

    Google Scholar 

  42. A. Yu. Kropanev, A. N. Petrov, and V. M. Zhukovskii, Zh. Neorg. Khim. 11, 2938 (1983).

    Google Scholar 

Download references

Funding

The work was fulfilled as part of the assignment of the Ministry of Science and Higher Education of the Russian Federation (No. AAAA-A20-120061990010-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Volkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovachev, I.B., Trushnikov, A.A., Volkova, N.E. et al. Crystal Structure and Oxygen Nonstoichiometry of Ba0.9Ln0.1Fe1 – yCoyO3 – δ (Ln = Nd, Sm, Eu) Solid Solutions. Russ. J. Inorg. Chem. 67, 761–766 (2022). https://doi.org/10.1134/S0036023622060092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622060092

Keywords:

Navigation