Skip to main content
Log in

Electrocatalysis and redox behavior of Pt2+ ion in CeO2 and Ce0.85Ti0.15O2: XPS evidence of participation of lattice oxygen for high activity

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electronic states of CeO2, Ce1 − x Pt x O2 − δ , and Ce1 − x − y Ti y Pt x O2 − δ electrodes have been investigated by X-ray photoelectron spectroscopy as a function of applied potential for oxygen evolution and formic acid and methanol oxidation. Ionically dispersed platinum in Ce1 − x Pt x O2 − δ and Ce1 − x − y Ti y Pt x O2 − δ is active toward these reactions compared with CeO2 alone. Higher electrocatalytic activity of Pt2+ ions in CeO2 and Ce1 − x Ti x O2 compared with the same amount of Pt0 in Pt/C is attributed to Pt2+ ion interaction with CeO2 and Ce1 − x Ti x O2 to activate the lattice oxygen of the support oxide. Utilization of this activated lattice oxygen has been demonstrated in terms of high oxygen evolution in acid medium with these catalysts. Further, ionic platinum in CeO2 and Ce1 − x Ti x O2 does not suffer from CO poisoning effect unlike Pt0 in Pt/C due to participation of activated lattice oxygen which oxidizes the intermediate CO to CO2. Hence, higher activity is observed toward formic acid and methanol oxidation compared with same amount of Pt metal in Pt/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu Z, Hong L, Tham MP, Lim TH, Jiang H (2006) J Power Sources 161(2):831–835

    Article  CAS  Google Scholar 

  2. Jayashree RS, Spendelow JS, Yeom J, Rastogi C, Shannon MA, Kenis PJA (2005) Electrochim Acta 50(24):4674–4682

    Article  CAS  Google Scholar 

  3. Mrozek MF, Luo H, Weaver MJ (2000) Langmuir 16(22):8463–8469

    Article  CAS  Google Scholar 

  4. Seland F, Tunold R, Harrington DA (2008) Electrochim Acta 53(23):6851–6864

    Article  CAS  Google Scholar 

  5. Hall SC, Subramanian V, Teeter G, Rambabu B (2004) Solid State Ionics 175(1–4):809–813

    Article  CAS  Google Scholar 

  6. Hall SB, Khudaish EA, Hart AL (1998) Electrochim Acta 43(14–15):2015–2024

    Article  CAS  Google Scholar 

  7. Walton DJ, Burke LD, Murphy MM (1996) Electrochim Acta 41(17):2747–2751

    Article  CAS  Google Scholar 

  8. Willsau J, Wolter O, Heitbaum J (1985) J Electroanal Chem 195(2):299–306

    Article  CAS  Google Scholar 

  9. Bockris JOM, Huq AKMS (1956) Proc R Soc Lond Ser A Math Phys Sci (1934–1990) 237(1209):277–296

    Article  CAS  Google Scholar 

  10. Bera P, Hegde MS, Patil KC (2001) Curr Sci 80:1576–1578

    CAS  Google Scholar 

  11. Hariprakash B, Bera P, Gaffoor SA, Hegde MS, Shukla AK (2001) J Electrochem Solid State Let 4:A23–A26

    Article  CAS  Google Scholar 

  12. Jeong K-J, Miesse CM, Choi J-H, Lee J, Han J, Yoon SP, Nam SW, Lim T-H, Lee TG (2007) J Power Sources 168(1):119–125

    Article  CAS  Google Scholar 

  13. Rice C, Ha S, Masel RI, Wieckowski A (2003) J Power Sources 115(2):229–235

    Article  CAS  Google Scholar 

  14. Samjeske G, Miki A, Ye S, Osawa M (2006) J Phys Chem B 110(33):16559–16566

    Article  CAS  Google Scholar 

  15. Chen YX, Heinen M, Jusys Z, Behm RJ (2006) Angew Chem Int Ed 45(6):981–985

    Article  CAS  Google Scholar 

  16. Park S, Xie Y, Weaver MJ (2002) Langmuir 18(15):5792–5798

    Article  CAS  Google Scholar 

  17. Li H, Sun G, Jiang Q, Zhu M, Sun S, Xin Q (2007) Electrochem Comm 9(6):1410–1415

    Article  CAS  Google Scholar 

  18. Lovic JD, Tripkovic AV, Gojkovic SL, Popovic KD, Tripkovic DV, Olszewski P, Kowal A (2005) J Electroanal Chem 581(2):294–302

    Article  CAS  Google Scholar 

  19. Lu G-Q, Crown A, Wieckowski A (1999) J Phys Chem B 103(44):9700–9711

    Article  CAS  Google Scholar 

  20. Liu B, Li HY, Die L, Zhang XH, Fan Z, Chen JH (2009) J Power Sources 186(1):62–66

    Article  CAS  Google Scholar 

  21. Chen W, Kim J, Sun S, Chen S (2007) Langmuir 23(22):11303–11310

    Article  CAS  Google Scholar 

  22. Choi J-H, Jeong K-J, Dong Y, Han J, Lim T-H, Lee J-S, Sung Y-E (2006) J Power Sources 163(1):71–75

    Article  CAS  Google Scholar 

  23. Hartung T, Willsau J, Heitbaum J (1986) J Electroanal Chem 205(1–2):135–149

    Article  CAS  Google Scholar 

  24. Kang S, Lee J, Lee JK, Chung S-Y, Tak Y (2006) J Phys Chem B 110(14):7270–7274

    Article  CAS  Google Scholar 

  25. Kim B-J, Kwon K, Rhee CK, Han J, Lim T-H (2008) Electrochim Acta 53(26):7744–7750

    Article  CAS  Google Scholar 

  26. Wang S, Kristian N, Jiang S, Wang X (2008) Electrochem Comm 10(7):961–964

    Article  CAS  Google Scholar 

  27. Hoshi N, Kida K, Nakamura M, Nakada M, Osada K (2006) J Phys Chem B 110(25):12480–12484

    Article  CAS  Google Scholar 

  28. Ha S, Larsen R, Masel RI (2005) J Power Sources 144(1):28–34

    Article  CAS  Google Scholar 

  29. Huang Y, Zhou X, Liao J, Liu C, Lu T, Xing W (2008) Electrochem Comm 10(4):621–624

    Article  CAS  Google Scholar 

  30. Larsen R, Ha S, Zakzeski J, Masel RI (2006) J Power Sources 157(1):78–84

    Article  CAS  Google Scholar 

  31. Wang R, Liao S, Ji S (2008) J Power Sources 180(1):205–208

    Article  CAS  Google Scholar 

  32. Yang S, Zhang X, Mi H, Ye X (2008) J Power Sources 175(1):26–32

    Article  CAS  Google Scholar 

  33. Zhou W, Lee JY (2008) J Phys Chem C 112(10):3789–3793

    Article  CAS  Google Scholar 

  34. Zhu Y, Kang Y, Zou Z, Zhou Q, Zheng J, Xia B, Yang H (2008) Electrochem Comm 10(5):802–805

    Article  CAS  Google Scholar 

  35. Persson K, Ersson A, Jansson K, Iverlund N, Järås S (2005) J Catal 231(1):139–150

    Article  CAS  Google Scholar 

  36. Bera P, Patil KC, Jayaram V, Subbanna GN, Hegde MS (2000) J Catal 196:293

    Article  CAS  Google Scholar 

  37. Bera P, Gayen A, Hegde MS, Lalla NP, Spadaro L, Frusteri F, Arena F (2003) J Phys Chem B 107(25):6122–6130

    Article  CAS  Google Scholar 

  38. Kim KS, Winograd N, Davis RE (1971) J Am Chem Soc 93(23):6296–6297

    Article  CAS  Google Scholar 

  39. Fachini EoR, Cabrera CR (1999) Langmuir 15:717–721

    Article  CAS  Google Scholar 

  40. Casella IG, Gatta M (2000) Anal Chem 72:2969–2975

    Article  CAS  Google Scholar 

  41. Sharma S, Hegde MS (2009) J Chem Phys 130(11):114706–114708

    Article  Google Scholar 

  42. Bera P, Priolkar KR, Gayen A, Sarode PR, Hegde MS, Emura S, Kumashiro R, Jayaram V, Subbanna GN (2003) Chem Mater 15(10):2049–2060

    Article  CAS  Google Scholar 

  43. Baidya T, Gayen A, Hegde MS, Ravishankar N, Dupont L (2006) J Phys Chem B 110(11):5262–5272

    Article  CAS  Google Scholar 

  44. Baidya T, Marimuthu A, Hegde MS, Ravishankar N, Madras G (2007) J Phys Chem C 111(2):830–839

    Article  CAS  Google Scholar 

  45. Kotani A, Ogasawarab H (1992) J Electron Spectrosc Relat Phenom 60:257

    Article  CAS  Google Scholar 

  46. Murugan B, Ramaswamy AV (2007) J Am Chem Soc 129(11):3062–3063

    Article  CAS  Google Scholar 

  47. Matolín V, Matolínova I, Václavú M, Khalakhan I, Vorokhta M, Fiala R, Pis I, Sofer Z, Poltierova-Vejpravova J, Mori T, Potin V, Yoshikawa H, Ueda S, Kobayashi K et al (2010) Langmuir 26(15):12824–12831

    Article  Google Scholar 

  48. Huheey JE, Keiter EA, Keiter RL (2004) Inorganic chemistry. Pearson Education, Upper Saddle River

    Google Scholar 

  49. Been J, Oloman CW (1993) J Appl Electrochem 23(12):1301–1309

    Article  CAS  Google Scholar 

  50. Bishop E, Cofre P (1981) Analyst 106:316–322

    Article  CAS  Google Scholar 

  51. Dutta G, Waghmare UV, Baidya T, Hegde MS, Priolkar KR, Sarode PR (2006) Chem Mater 18:3249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudhanshu Sharma or M. S. Hegde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Singh, P. & Hegde, M.S. Electrocatalysis and redox behavior of Pt2+ ion in CeO2 and Ce0.85Ti0.15O2: XPS evidence of participation of lattice oxygen for high activity. J Solid State Electrochem 15, 2185–2197 (2011). https://doi.org/10.1007/s10008-011-1402-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1402-z

Keywords

Navigation