Skip to main content
Log in

Electrochemical regeneration of ceric sulphate in an undivided cell

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ceric sulphate (0–0.5 m) was generated electrochemically from cerous sulphate slurries (0.5–0.8 m total cerium) in 1.61 m sulphuric acid, at 50 °C, using a bench scale differential area undivided electrochemical cell with an anode to cathode ratio of eleven. A cell current efficiency for Ce(IV) of 90% was obtained at an anode current density of 0.25 A cm−2. An empirical model illustrates an increase in overall current efficiency for Ce(IV) with an increase in electrolyte velocity, an increase in total cerium concentration, and a decrease in the cell current. From separate kinetic studies on rotating electrodes, both, anode and cathode kinetics were found to be affected by cerium sulphate adsorption processes. Anode adsorption of cerous sulphate species leads to inhibited mass transfer and negatively affected current efficiencies for Ce(IV). Cathode adsorption of cerium sulphate is thought to be responsible for high cathode current efficiencies for hydrogen (93–100%). The dissolved cerous sulphate concentration increased with increasing ceric sulphate and total cerium sulphate concentrations resulting in slurries with a stable dissolved cerous sulphate concentration of as high as 0.851 m in 1.6 m H2SO4 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. I. Tenn, Chem. Eng. NY 86 (Dec 3, 1979) 64–65.

    Google Scholar 

  2. S. Harrison, R. Labrecque and A. Theoret, ‘Hydro-Quebec's Development and Demonstration Activities in Electroorganic synthesis’, Proceedings of the Fifth International Forum On Electrolysis, Ft. Lauderdale, FA, Nov. 1991, Electrosynthesis Company, East Amherst, NY (1991).

    Google Scholar 

  3. R. M. Spotnitz, R. P. Kreh, J. T. Lundquist, and P. J. Press, J. Appl. Electrochem. 20 (1990) 209–215.

    Google Scholar 

  4. P. Pichaichanarong, R. M. Spotnitz, R. P. Kreh, S. M. Goldfarb, and J. T. Lundquist, ‘Simulation of a mediated electrochemical process,’ 1988 Spring National Meeting of the AIChE, New Orleans, Mar 1988, AIChE, New York, NY, preprints (1988).

    Google Scholar 

  5. D. Pletcher and E. M. Valdes, Electrochim. Acta 33 (4), (1988) 509–515.

    Google Scholar 

  6. K. H. Oehr, Can. Patent 1166 600 (1984).

  7. T. H. Randle and A. T. Kuhn, J. Chem. Soc., Faraday Trans. I 79 (1983) 1741–1756.

    Google Scholar 

  8. K. J. Vetter, ‘Electrochemical Kinetics’, Academic Press, New York (1967).

    Google Scholar 

  9. L. A. Blatz, J. Phys. Chem. 66 (1962) 160–164.

    Google Scholar 

  10. T. W. Newton and G. M. Archand, J. Am. Chem. Soc. 75 (1953) 2449–2453.

    Google Scholar 

  11. T. J. Hardwick and E. Robertson, Can. J. Chem. 29 (1951) 828–837.

    Google Scholar 

  12. A. I. Vogel, ‘Textbook of Quantitative Inorganic Analysis’, Longman, New York (1978).

    Google Scholar 

  13. T. H. Randle and A. T. Kuhn, Electrochim. Acta 31(7), (1986) 739–744.

    Google Scholar 

  14. A. T. Kuhn and T. H. Randle, J. Chem. Soc. Faraday Trans. I 81 (1985) 403–419.

    Google Scholar 

  15. T. Komatsu, S. Numata, K. Hioki, T. Sumino, US Patent 4 530 745 (1984).

    Google Scholar 

  16. J. W. Mellor, ‘A Comprehensive Treatise on Inorganic and Theoretical Chemistry’, Volume V, Longmans, Green & Co., New York (1924).

    Google Scholar 

  17. Personal communication with K. H. Oehr.

  18. T. Biegler, D. A. J. Tand, and R. Woods, J. Electroanal. Chem. Interfacial Electrochem. 29 (1971) 269–277.

    Google Scholar 

  19. J. A. Harrison and A. T. Kuhn, 184 (1985) 347–356.

    Google Scholar 

  20. M. Eisenberg, D. W. Tobias, and C. R. Wilke, J. Electrochem. Soc. 101(6), (1954) 306–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Been, J., Oloman, C.W. Electrochemical regeneration of ceric sulphate in an undivided cell. J Appl Electrochem 23, 1301–1309 (1993). https://doi.org/10.1007/BF00234816

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234816

Keywords

Navigation