Skip to main content
Log in

Consistent diffusion coefficients of ferrocene in some non-aqueous solvents: electrochemical simultaneous determination together with electrode sizes and comparison to pulse-gradient spin-echo NMR results

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cyclic voltammetry data recorded at disk macro- (millimeter dimension) and microelectrodes (10 and 100 μm) at various scan rates are used to simultaneously determine the diffusion coefficient D of ferrocene (fc) and the electroactive surfaces A and/or radii r of the electrodes. A case study with three electrodes of different sizes in CH3CN- and propylene carbonate (PC)-based electrolytes shows the possibly large effect of incorrect D values. Diffusion coefficients of fc are determined for PC, CH3CN, CH2Cl2, DMF, and DMSO electrolytes and (except for PC) compared to those from pulse-gradient spin-echo nuclear magnetic resonance experiments in the presence of supporting electrolyte in the respective deuterated solvents. The dependence of D fc on solvent viscosity is shown to follow the Stokes–Einstein relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In the following, we will use the term “microelectrode” not only for electrodes conforming to Heinze’s definition (d ≤ 20 μm) [4] but also for those of a larger diameter if used under conditions where a hemispherical diffusion steady-state can be achieved.

References

  1. Speiser B (2003) Linear sweep and cyclic voltammetry. In: Bard AJ, Stratmann M, Unwin P (eds) Encyclopedia of electrochemistry, vol. 3. Instrumentation and electroanalytical chemistry. Wiley-VCH, Weinheim, pp 81–104

    Google Scholar 

  2. Speiser B (2004) Methods to investigate mechanisms of electro-organic reactions. In: Bard AJ, Stratmann M, Schäfer H (eds) Encyclopedia of electrochemistry, vol 8, Organic electrochemistry. Wiley-VCH, Weinheim, pp 1–23

    Google Scholar 

  3. Heinze J (1991) Angew Chem 103:175–177, Angew Chem Int Ed Engl 30:170–171

    Article  CAS  Google Scholar 

  4. Heinze J (1993) Angew Chem 105:1327–1349, Angew Chem Int Ed Engl 32:1268–1288

    Article  CAS  Google Scholar 

  5. Nicholson RS, Shain I (1964) Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  6. Kakihana M, Ikeuchi H, Satô GP, Tokuda K (1980) J Electroanal Chem 108:381–383

    CAS  Google Scholar 

  7. Kakihana M, Ikeuchi H, Satô GP, Tokuda K (1981) J Electroanal Chem 117:201–211

    Article  CAS  Google Scholar 

  8. Winlove CP, Parker KH, Oxenham RKC (1984) J Electroanal Chem 170:293–304

    Article  CAS  Google Scholar 

  9. Baranski AS, Fawcett WR, Gilbert CM (1985) Anal Chem 57:166–170

    Article  CAS  Google Scholar 

  10. Lawson DR, Whiteley LD, Martin CR, Szentirmay MN, Song JI (1988) J Electrochem Soc 135:2247–2253

    Article  CAS  Google Scholar 

  11. Whiteley LD, Martin CR (1989) J Phys Chem 93:4650–4658

    Article  CAS  Google Scholar 

  12. Amatore C, Azzabi M, Calas P, Jutand A, Lefrou C, Rollin Y (1990) J Electroanal Chem 288:45–63

    Article  CAS  Google Scholar 

  13. Baur JE, Wightman RM (1991) J Electroanal Chem 305:73–81

    Article  CAS  Google Scholar 

  14. Denuault G, Mirkin MV, Bard AJ (1991) J Electroanal Chem 308:27–38

    Article  CAS  Google Scholar 

  15. Kulesza PJ, Faulkner LR (1993) J Am Chem Soc 115:11878–11884

    Article  CAS  Google Scholar 

  16. Jung Y, Kwak J (1994) Bull Korean Chem Soc 15:209–213

    CAS  Google Scholar 

  17. Collinson MM, Zambrano PJ, Wang H, Taussig JS (1999) Langmuir 15:662–668

    Article  CAS  Google Scholar 

  18. Evans RG, Klymenko OV, Saddoughi SA, Hardacre C, Compton RG (2004) J Phys Chem B 108:7878–7886

    Article  CAS  Google Scholar 

  19. Lewera A, Miecznikowski K, Chojak M, Makowski O, Golimowski J, Kulesza PJ (2004) Anal Chem 76:2694–2699

    Article  CAS  Google Scholar 

  20. Han LM, Suo QL, Luo MH, Zhu N, Ma YQ (2008) Inorg Chem Commun 11:873–875

    Article  CAS  Google Scholar 

  21. Chanfreau S, Cognet P, Camy S, Condoret J-S (2007) J Electroanal Chem 604:33–40

    Article  CAS  Google Scholar 

  22. Guo Y, Kanakubo M, Kodama D, Nanjo H (2010) J Electroanal Chem 639:109–115

    Article  CAS  Google Scholar 

  23. Menshykau D, O’Mahony AM, Cortina-Puig M, del Campo FJ, Muñoz FX, Compton RG (2010) J Electroanal Chem 647:20–28

    Article  CAS  Google Scholar 

  24. Shoup D, Szabo A (1982) J Electroanal Chem 140:237–245

    Article  CAS  Google Scholar 

  25. Gritzner G, Kůta J (1984) Pure Appl Chem 56:461–466

    Article  Google Scholar 

  26. Sun H, Chen W, Kaifer AE (2006) Organometallics 25:1828–1830

    Article  CAS  Google Scholar 

  27. Dümmling S, Eichhorn E, Schneider S, Speiser B, Würde M (1996) Curr Sep 15:53–56

    Google Scholar 

  28. Metrohm, Herisau/CH: Electrode tips for rotating disk electrode (RDE), technical document no. 8.109.8002ML

  29. Gollas B, Krauß B, Speiser B, Stahl H (1994) Curr Sep 13:42–44

    CAS  Google Scholar 

  30. Kuwana T, Bublitz DE, Hoh G (1960) J Am Chem Soc 82:5811–5817

    Article  CAS  Google Scholar 

  31. Amatore C, Savéant JM (1978) J Electroanal Chem 86:227–232

    Article  CAS  Google Scholar 

  32. Amatore C, Savéant JM (1979) J Electroanal Chem 102:21–40

    Article  CAS  Google Scholar 

  33. Zara AJ, Machado SS, Bulhões LOS, Benedetti AV, Rabockai T (1987) J Electroanal Chem 221:165–174

    Article  CAS  Google Scholar 

  34. Cassoux P, Dartiguepeyron R, Fabre P-L, de Montauzon D (1985) Electrochim Acta 30:1485–1490

    Article  CAS  Google Scholar 

  35. Scholl H, Sochaj K (1989) Electrochim Acta 34:915–928

    Article  CAS  Google Scholar 

  36. Clark ME, Ingram JL, Blakely EE, Bowyer WJ (1995) J Electroanal Chem 385:157–162

    Article  Google Scholar 

  37. Jacob SR, Hong Q, Coles BA, Compton RG (1999) J Phys Chem B 103:2963–2969

    Article  CAS  Google Scholar 

  38. Stejskal EO, Tanner JE (1965) J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  39. Cohen Y, Avram L, Frish L (2005) Angew Chem 117:524–560, Angew Chem Int Ed 44:520–554

    Article  Google Scholar 

  40. Bao D, Millare B, Xia W, Steyer BG, Gerasimenko AA, Ferreira A, Contreras A, Vullev VI (2009) J Phys Chem A 113:1259–1267

    Article  CAS  Google Scholar 

  41. Einstein A (1906) Ann Phys 19:289–306

    Article  CAS  Google Scholar 

  42. Valencia DP, González FJ (2011) Electrochem Commun 13:129–132

    Article  CAS  Google Scholar 

  43. Tsierkezos NG (2007) J Solution Chem 36:289–302

    Article  CAS  Google Scholar 

  44. Bulhões LOS, Chum HL, Soria D, Rabockai T (1978) In: Neves EA, Rabockai T (eds) Proc 1st Simp Bras Eletroquim Eletroanal, pp 78–84

  45. Feng G, Xiong Y, Wang H, Yang Y (2008) Electrochim Acta 53:8253–8257

    Article  CAS  Google Scholar 

  46. Reiter J, Vondrák J, Mička Z (2005) Electrochim Acta 50:4469–4476

    Article  CAS  Google Scholar 

  47. Benedetti AV, Zara AJ, Spinola Machado S, Bulhões LOS (1982) In: Proc 3rd An Simp Bras Eletroquim Eletroanal, pp. 385–390

  48. Scholl H, Sochaj K (1990) Electrochim Acta 35:93–94

    Article  CAS  Google Scholar 

  49. Tsierkezos NG, Ritter U (2010) J Appl Electrochem 40:409–417

    Article  CAS  Google Scholar 

  50. Leventis N, Chen M, Gao X, Canalas M, Zhang P (1998) J Phys Chem B 102:3512–3522

    Article  CAS  Google Scholar 

  51. Diaz AF, Baier M, Wallraff GM, Miller RD, Nelson J, Pietro W (1991) J Electrochem Soc 138:742–747

    Article  CAS  Google Scholar 

  52. Neghmouche NS, Khelef A, Lanez T (2010) Res J Pharm Biol Chem Sci 1:76–82

    CAS  Google Scholar 

  53. Nafady A, McAdam CJ, Bond AM, Moratti SC, Simpson J (2009) J Solid State Electrochem 13:1511–1519

    Article  CAS  Google Scholar 

  54. Cooper JB, Bond AM (1991) J Electroanal Chem 315:143–160

    Article  CAS  Google Scholar 

  55. Salmon A (2001) Synthese und Elektrochemie funktioneller Ferrocenyl- und Multiferrocenyl-Verbindungen.Ph.D. thesis, Univ. Bielefeld, Germany. URL http://bieson.ub.uni-bielefeld.de/volltexte/2003/347/pdf/0015.pdf

  56. Lide DR (ed) (1995) Handbook of Organic Solvents. CRC, Boca Raton

    Google Scholar 

Download references

Acknowledgments

The authors thank Jürgen Heinze, Universität Freiburg, and Gunther Wittstock, Universität Oldenburg, for discussions. We are indebted to Jörg Henig and David Degler, Universität Tübingen, for preliminary experiments. Adrian Ruff thanks the Universität Tübingen for an LGFG fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Speiser.

Additional information

This article is dedicated to Professor Fritz Pragst on the occasion of his 70th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janisch, J., Ruff, A., Speiser, B. et al. Consistent diffusion coefficients of ferrocene in some non-aqueous solvents: electrochemical simultaneous determination together with electrode sizes and comparison to pulse-gradient spin-echo NMR results. J Solid State Electrochem 15, 2083–2094 (2011). https://doi.org/10.1007/s10008-011-1399-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1399-3

Keywords

Navigation