Skip to main content
Log in

Salt bridge in electroanalytical chemistry: past, present, and future

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A salt bridge is a device indispensable in electroanalytical chemistry and has been used over 100 years. Thanks to a salt bridge, we are able to concentrate our attention to what is happening at the working electrode. However, the magical performance of the traditional salt bridge based on potassium chloride does not always work satisfactorily. The longevity of KCl-type salt bridge is mainly because of the lack of better alternatives. A newly emerged salt bridge based on moderately hydrophobic ionic liquids is promising to solve many of the problems that KCl-type salt bridges are unable to, possibly making the future of electroanalytical chemistry a little easier and brighter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The standard ion transfer potential of ion j is defined by \(\Delta^{\rm W}_{\rm IL}\phi^{^{0}}_{_{\rm j^{z_j}}} =\) \(-\Delta G^{^{\rm IL \rightarrow W, 0}}_{_{\rm j}}\)/(\(z_{_{\rm j}}F\)), where \(\Delta G^{^{\rm IL \rightarrow W, 0}}_{_{\rm j}}\) is the standard Gibbs energy of the transfer of j from the ionic liquid to water.

References

  1. MacInnes DA (1961) The principles of electrochemistry. Dover, New York, Chapter 13

    Google Scholar 

  2. Uznanski P, Bryszewska E (2010) J Mater Sci 45(6):1547–1552

    Article  CAS  Google Scholar 

  3. Ershov BG, Abkhalimov EV, Vysotskii VV, Roldughin VI (2010) Colloid J 72(2):177–182

    Article  CAS  Google Scholar 

  4. Bjerrum N (1905) Z Phys Chem 53:428–440

    Google Scholar 

  5. Bjerrum N (1911) Z Elektrochem 17(10):389–393

    CAS  Google Scholar 

  6. Clark WM, Lubs HA (1916) J Biol Chem 25(3):479–510

    CAS  Google Scholar 

  7. Kakiuchi T, Yoshimatsu T (2006) Bull Chem Soc Jpn 79(7):1017–1024

    Article  CAS  Google Scholar 

  8. Sakaida H, Kitazumi Y, Kakiuchi T (2010) Talanta 83:663–666

    Article  CAS  Google Scholar 

  9. Guggenheim EA (1929) J Phys Chem 33:842–849

    Article  CAS  Google Scholar 

  10. Izutsu K (2002) Electrochemistry in nonaqueous solutions. Wiley-VCH, Weinheim

    Book  Google Scholar 

  11. Helmholtz H (1878) Ann Phys Chem 3:201–216

    Article  Google Scholar 

  12. Nernst W (1888) Z Phys Chem 2:613–637

    Google Scholar 

  13. Nernst W (1891) Z Phys Chem 8:129–181

    Google Scholar 

  14. Planck M (1890) Ann Physik [3] 39:161–186

    Google Scholar 

  15. Planck M (1890) Ann Physik [3] 40:561–576

    Google Scholar 

  16. Negbauer W (1891) Ann Phys Chem 44:737–758

    Google Scholar 

  17. Tower OF (1895) Z Phys Chem 18:17–50

    CAS  Google Scholar 

  18. Tower OF (1896) Z Phys Chem 20:198–206

    CAS  Google Scholar 

  19. Kohlrausch F (1885) Ann Physik [3] 26:161–226

    Article  Google Scholar 

  20. Ostwald W (1888) Z Phys Chem 2:840

    Google Scholar 

  21. Ostwald W, Luther R (1902) Hand- und Hülfsbuch zur Ausfürung Physiko-chemischer Messungen, 2 edn. Wilhelm Engelmann, Leipzig

    Google Scholar 

  22. Ostwald W (1893) Hand- und Hilfsbuch zur Ausfürung Physiko-chemischer Messungen. Wilhelm Engelmann, Leipzig

    Google Scholar 

  23. Bjerrum N (1911) Z Elektrochem 17:58–61

    CAS  Google Scholar 

  24. Henderson P (1907) Z Phys Chem 59:118–127

    CAS  Google Scholar 

  25. Henderson P (1908) Z Phys Chem 63:325–345

    CAS  Google Scholar 

  26. Bose E (1900) Z Phys Chem 34:701–760

    Google Scholar 

  27. Abegg R, Auerbach F, Luther R (1911) Messungen elektromotorischer Kräfte galvanischer Ketten. In: Nernst W (ed) Abhandlungen der Deutchen Bunsen-Gesellschaft für angewandte physikalische Chemie. Verlag Chemie GMBH, Berlin

    Google Scholar 

  28. Cumming AC (1907) Z Elektrochem 13:17–18

    Article  Google Scholar 

  29. Cumming AC (1907) Trans Faraday Soc 2(3):213–220

    Article  Google Scholar 

  30. Loomis NE, Acree SF (1911) Am Chem J 46:585–620

    Google Scholar 

  31. Desha LJ, Acree SF (1911) Am Chem J 46:638–648

    Google Scholar 

  32. Bättger W (1897) Z Phys Chem 24:252–301

    Google Scholar 

  33. Cremer M (1906) Z Biologie 47:562–608

    CAS  Google Scholar 

  34. Scholz F (1911) J Solid State Electrochem 15:5–14

    Article  Google Scholar 

  35. Haber F, Klemensiewicz Z (1909) Z Phys Chem 67:385–431

    CAS  Google Scholar 

  36. Janz GJ (1961) In: Ives DJG, Janz GJ (eds) Reference electrodes. Academic, New York, p 55

    Google Scholar 

  37. Hitchcock DI (1923) J Gen Physiol 5:383–394

    Article  CAS  Google Scholar 

  38. Michaelis L, Kakinuma K (1923) Biochem Z 141:394–409

    CAS  Google Scholar 

  39. Michaelis L, Fujita A (1923) Biochem Z 142:398–406

    CAS  Google Scholar 

  40. Sørensen SPL, Linderstrøm-Lang K (1924) Compt Rend Trav Lab Carlsberg 15:1–40

    Google Scholar 

  41. Freundlich H, Rona P (1920) Berlin Akad Ber 396 (cited by P. T. Kerrige, 1925)

  42. Hughes WS (1922) J Am Chem Soc 44:2860–2867

    Article  CAS  Google Scholar 

  43. Kerridge PT (1925) Biochem J 19(4):611–617

    CAS  Google Scholar 

  44. Cumming AC, Gilchrist E (1913) Trans Faraday Soc 9(1/2):174–185

    Google Scholar 

  45. MacInnes DA, Parker K (1915) J Am Chem Soc 37:1445–1461

    Article  CAS  Google Scholar 

  46. Myers CN, Acree SF (1913) Am Chem J 50:396–411

    Google Scholar 

  47. Fales HA, Vosburgh WC (1918) J Am Chem Soc 40:1291–1316

    Article  CAS  Google Scholar 

  48. Scatchard G (1923) J Am Chem Soc 45:1716–1723

    Article  CAS  Google Scholar 

  49. Scatchard G (1925) J Am Chem Soc 47:696–709

    Article  CAS  Google Scholar 

  50. MacLagan NF (1929) Biochem J 23:309–318

    CAS  Google Scholar 

  51. Lewis GN, Rupert FF (1911) J Am Chem Soc 33:299–307

    Article  CAS  Google Scholar 

  52. Walpole GS (1914) J Chem Soc 105:2501–2521

    CAS  Google Scholar 

  53. Guggenheim EA (1930) J Am Chem Soc 52:1315–1337

    Article  CAS  Google Scholar 

  54. Lamb AB, Larson AT (1920) J Am Chem Soc 42:229–237

    Article  CAS  Google Scholar 

  55. MacInnes DA, Yeh YL (1921) J Am Chem Soc 43:2563–2573

    Article  CAS  Google Scholar 

  56. Clark WM (1927) The determination of hydrogen ions, 2 edn. The Williams & Wilkins, Baltimore

    Google Scholar 

  57. Ives DJG, Janz GJ (1961) Reference electrodes. Academic, New York

    Google Scholar 

  58. Covington AK, Rebelo MJF (1983) Ion-selective Electrode Rev 5:93–128

    CAS  Google Scholar 

  59. Harned RS (1925) The electrochemistry of solutions. In: Taylor HS (ed) A treatise on physical chemistry a co-operative effort by a group of physical chemists, vol 2. D van Nostrand, New York, p 782

    Google Scholar 

  60. Buck RP, Rodinini S, Covington AK, Baucke FGK, Brett CMA, Camoes MF, Milton MJT, Mussini T, Naumann R, Pratt KW, Spitzer P, Wilson GS (2002) Pure Appl Chem 74(11):2169–2200

    Article  CAS  Google Scholar 

  61. Bates RG, Guggenheim EA (1960) Pure Appl Chem 1:163–168

    Article  CAS  Google Scholar 

  62. Hamer WJ, Wu YC (1972) J Phys Chem Ref Data 1:1047–1100

    Article  CAS  Google Scholar 

  63. Covington AK, Rebelo MJF (1987) Anal Chim Acta 200(1):245–260

    Article  CAS  Google Scholar 

  64. Bates RG (1978) Denki Kagaku 46(9):480–484

    CAS  Google Scholar 

  65. Bates RG (1973) Determination of pH, 2 edn. Wiley, New York, chapter 3

    Google Scholar 

  66. Picknett RG (1968) Trans Faraday Soc 64:1059–1069

    Article  CAS  Google Scholar 

  67. Koch WF, Marinenko G, Paule RC (1986) J Res Nat Bur Stand 91:23

    CAS  Google Scholar 

  68. Franklin S, Miller GM (1989) Am Lab 40

  69. Ozeki T, Tsubosaka Y, Nakayama S, Ogawa N, Kimoto T (1998) Anal Sci 14(4):749–756

    Article  CAS  Google Scholar 

  70. Midgley D, Torrance K (1979) Analyst 104:63–72

    Article  CAS  Google Scholar 

  71. Covington AK (1981) Anal Chim Acta 127:1–21

    Article  CAS  Google Scholar 

  72. Metcalf RC (1984) Z Gletscher Glazial 20:41–51

    CAS  Google Scholar 

  73. Covington AK, Whalley PD, Davison W (1985) Pure Appl Chem 57(6):877–886

    Article  Google Scholar 

  74. Davison W, Gardner MJ (1986) Anal Chim Acta 182:17–31

    Article  CAS  Google Scholar 

  75. Metcalf RC (1987) Analyst 112(11):1573–1577

    Article  CAS  Google Scholar 

  76. Kadis R, Leito I (2010) Anal Chim Acta 664(2):129–135

    Article  CAS  Google Scholar 

  77. Kakiuchi T (2007) Anal Chem 79(17):6442–6449

    Article  CAS  Google Scholar 

  78. Kakiuchi T (2008) Anal Sci 24(10):1221–1230

    Article  CAS  Google Scholar 

  79. Kakiuchi T, Tsujioka N, Kurita S, Iwami Y (2003) Electrochem Commun 5(2):159–164

    Article  CAS  Google Scholar 

  80. Kakiuchi T, Tsujioka N (2007) J Electroanal Chem 599:209–212

    Article  CAS  Google Scholar 

  81. Yoshimatsu T, Kakiuchi T (2007) Anal Sci 23(9):1049–1052

    Article  CAS  Google Scholar 

  82. Kakiuchi T, Yoshimatsu T, Nishi N (2007) Anal Chem 79(18):7187–7191

    Article  CAS  Google Scholar 

  83. Fujino Y, Kakiuchi T (2011) J Electroanal Chem 651:61–66

    Article  CAS  Google Scholar 

  84. Shibata M, Sakaida H, Kakiuchi T (2011) Anal Chem 83:164–168

    Article  CAS  Google Scholar 

  85. Pitzer KS, Roy RN, Silvester LF (1977) J Am Chem Soc 99:4930–4936

    Article  CAS  Google Scholar 

  86. Zhang C, Raugei S, Eisenberg B, Carloni P (2010) J Chem Theory Comput 6(7):2167–2175

    Article  CAS  Google Scholar 

  87. Fraenkel D (2010) Mol Phys 108(11):1435–1466

    Article  CAS  Google Scholar 

  88. Vincze J, Valisko M, Boda D (2010) J Chem Phys 133(15):154507

    Article  Google Scholar 

  89. Fraenkel D (2011) J Phys Chem B 115:557–568

    Article  CAS  Google Scholar 

  90. Kakiuchi T, Senda M (1984) Bull Chem Soc Jpn 57(7):1801–1808

    Article  CAS  Google Scholar 

  91. Kakiuchi T, Obi I, Senda M (1985) Bull Chem Soc Jpn 58(6):1636–1641

    Article  CAS  Google Scholar 

  92. Kakiuchi T, Senda M (1987) Bull Chem Soc Jpn 60(9):3099–3107

    Article  CAS  Google Scholar 

  93. Shibata M, Yamanuki M, Iwamoto Y, Nomura S, Kakiuchi T (2010) Anal Sci 26(11):1203–1206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Fritz Scholz for [27]. This work was partly supported by Japan Science and Technology Agency under the program, “Development of Systems and Technology for Advanced Measurement and Analysis” and by Grant-in-Aid for Scientific Research (No. 21245021) from the Ministry of Education, Sports, Science, and Technology, Japan. Support by the Global COE Program, International Center for Integrated Research and Advanced Education in Materials Science (No.B-09) from the Ministry of Education, Culture, Sports, Science and Technology of Japan is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kakiuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakiuchi, T. Salt bridge in electroanalytical chemistry: past, present, and future. J Solid State Electrochem 15, 1661–1671 (2011). https://doi.org/10.1007/s10008-011-1373-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1373-0

Keywords

Navigation