Skip to main content
Log in

Formation of cuprous oxide layers in Cu(II) solutions containing gluconic acid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In accordance with thermodynamic analysis, cuprous oxide layers are formed spontaneously in the Cu|Cu(II), gluconic acid system at pH > 3.7 under open-circuit conditions. A current peak of Cu2O reduction is observed on cathodic voltammograms at ca −0.7 V, its height being dependent on the exposure time. The analysis of the charge transferred in this region yields the rate of Cu2O formation equal to 1.25 × 10−10 mol cm−2 s−1. The light perturbation of Cu electrode under open-circuit conditions results in the generation of a negative photopotential, which is indicative of n-type conductivity. The threshold wavelength is equal to ∼590 nm and is consistent with a band gap of ∼2.1 eV. Anodic photocurrents, which are observed near the open-circuit potential, decrease with cathodic polarization and change their sign at ∼0.05 V. Analysis of impedance data was performed, invoking the equivalent circuit that accounts for the two-step charge transfer. In the presence of Cu2O, some retardation of Cu(II) reduction was found to occur with a slight increase in the admittance of the double layer. The suggestion has been made that oxide layers formed in Cu(II) gluconate solutions cannot be compact and uniformly distributed over the entire electrode surface. Relevant investigations of surface morphology support this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pointu B, Braizaz H, Poncet P, Rousseau J (1983) J Electroanal Chem 151:65

    Article  CAS  Google Scholar 

  2. Aruchamy A, Fujishima A (1989) J Electroanal Chem 266(397):272–125

    Google Scholar 

  3. Survila A, Kalinauskas P, Uksienė V (1993) Electrochim Acta 38:2733

    Article  CAS  Google Scholar 

  4. Millet B, Fiaud C, Hinnen C, Sutter EMM (1995) Corros Sci 37:1903

    Article  CAS  Google Scholar 

  5. Survila A, Kalinauskas P, Ivaškevič E, Kutner W (1997) Electrochim Acta 42:2935

    Article  CAS  Google Scholar 

  6. Survila A, Kalinauskas P, Valsiūnas I (2002) Russ J Electrochem 38:1068

    Article  CAS  Google Scholar 

  7. Survila A, Survilienė A, Kanapeckaitė S, Būdienė J, Kalinauskas P, Stalnionis G, Sudavičius A (2005) J Electroanal Chem 582:221

    Article  CAS  Google Scholar 

  8. Bertocci U (1978) J Electrochem Soc 125:1598

    Article  CAS  Google Scholar 

  9. Babić R, Metikoš-Huković M, Lončar M (1999) Electrochim Acta 44:2413

    Article  Google Scholar 

  10. Survila A, Kalinauskas P, Survilienė A, Sudavičius A (2007) Chemija (Vilnius) 18:18

    CAS  Google Scholar 

  11. Survila A, Kanapeckaitė S, Survilienė A (2001) J Electroanal Chem 501:151

    Article  CAS  Google Scholar 

  12. Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo J, Domen K (1998) J Chem Soc, Chem Commun 3:357

    Google Scholar 

  13. DeJongh PE, Vanmaekelbergh D, Kelly JJ (2000) J Electrochem Soc 147:486

    Article  CAS  Google Scholar 

  14. Rajeshwar K, Singh P, DuBow J (1978) Elchim Acta 23:1117

    Article  CAS  Google Scholar 

  15. Gerischer H (1977) J Electroanal Chem 82:133

    Article  CAS  Google Scholar 

  16. Survila A, Kalinauskas P, Uksienė V (1988) Chemija (Vilnius) 1:51

    Google Scholar 

  17. Ishizuka S, Kato S, Okamoto Y, Sakurai T, Akimoto K, Fujiwara N, Kobayashi H (2003) Appl Surf Sci 216:94

    Article  CAS  Google Scholar 

  18. Mahalingam T, Chitra JSP, Chu JP, Sebastian PJ (2004) Mater Lett 58:1802

    Article  CAS  Google Scholar 

  19. Rai BP (1988) Sol Cells 25:265

    Article  CAS  Google Scholar 

  20. Nakaoka K, Ueyama J, Ogura K (2004) J Electrochem Soc 151:C661

    Article  CAS  Google Scholar 

  21. Mahalingam T, Chitra JSP, Chu JP, Moon H, Kwon HJ, Kim YD (2006) J Mater Sci Mater Electron 17:519

    Article  CAS  Google Scholar 

  22. Boukamp BB (1989) Equivalent circuit (EQUIVCRT.PAS). User’s manual. University of Twente, Enschede

    Google Scholar 

  23. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solution. Pergamon, London

    Google Scholar 

  24. Bard AJ, Parsons R, Jordan J (eds) (1985) Standard potentials in aqueous solution. Marcel Dekker, New York

    Google Scholar 

  25. Survila A, Mockus Z, Kanapeckaitė S, Pileckienė J, Stalnionis G (2011) Russ J Electrochem 47:129

    Article  CAS  Google Scholar 

  26. Survilienė A, Survila A (2002) Russ J Electrochem 38:1216

    Article  Google Scholar 

  27. Būdienė J, Kalinauskas P, Survila A (2004) Chemija (Vilnius) 15:7

    Google Scholar 

  28. Pileckienė J, Grigucevičienė A, Survila A (2011) Chemija (Vilnius) (in press)

  29. Survila A, Baliukienė V (2001) Chemija (Vilnius) 12:195

    CAS  Google Scholar 

  30. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  31. Lasia A (1999) Electrochemical impedance spectroscopy and its applications. In: Konway BE, Bocris J, White RE (eds) Modern aspects of electrochemistry, vol 32. Kluwer Academic/Plenum, New York, p 143

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvydas Survila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Survila, A., Pileckienė, J., Kanapeckaitė, S. et al. Formation of cuprous oxide layers in Cu(II) solutions containing gluconic acid. J Solid State Electrochem 16, 521–527 (2012). https://doi.org/10.1007/s10008-011-1361-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1361-4

Keywords

Navigation